This function calculates Akaike s final prediction error
% estimate of the average Generalization error.
%
% [FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) produces the
% final prediction error estimate (fpe), the effective number of
% weights in the network if the network has been trained with
% weight decay, an estimate of the noise variance, and the Gauss-Newton
% Hessian.
%
標簽:
Generalization
calculates
prediction
function
上傳時間:
2014-12-03
上傳用戶:maizezhen
This function calculates Akaike s final prediction error
% estimate of the average Generalization error for network
% models generated by NNARX, NNOE, NNARMAX1+2, or their recursive
% counterparts.
%
% [FPE,deff,varest,H] = nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,skip,Chat)
% produces the final prediction error estimate (fpe), the effective number
% of weights in the network if it has been trained with weight decay,
% an estimate of the noise variance, and the Gauss-Newton Hessian.
%
標簽:
Generalization
calculates
prediction
function
上傳時間:
2016-12-27
上傳用戶:腳趾頭
最新的支持向量機工具箱,有了它會很方便 1. Find time to write a proper list of things to do! 2. Documentation. 3. Support Vector Regression. 4. Automated model selection. REFERENCES ========== [1] V.N. Vapnik, "The Nature of Statistical Learning Theory", Springer-Verlag, New York, ISBN 0-387-94559-8, 1995. [2] J. C. Platt, "Fast training of support vector machines using sequential minimal optimization", in Advances in Kernel Methods - Support Vector Learning, (Eds) B. Scholkopf, C. Burges, and A. J. Smola, MIT Press, Cambridge, Massachusetts, chapter 12, pp 185-208, 1999. [3] T. Joachims, "Estimating the Generalization Performance of a SVM Efficiently", LS-8 Report 25, Universitat Dortmund, Fachbereich Informatik, 1999.
標簽:
支持向量機
工具箱
上傳時間:
2013-12-16
上傳用戶:亞亞娟娟123