The SDI standards are the predominant standards for uncompressed digital videointerfaces in the broadcast studio and video production center. The first SDI standard,SD-SDI, allowed standard-definition digital video to be transported over the coaxial cableinfrastructure initially installed in studios to carry analog video. Next, HD-SDI wasto support high-definition video. Finally, dual link HD-SDI and 3G-SDIdoubled the bandwidth of HD-SDI to support 1080p (50 Hz and 60 Hz) and other videoformats requiring more bandwidth than HD-SDI provides.
This application note covers the design considerations of a system using the performance
features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The
design focuses on high system throughput through the AXI Interconnect core with F
MAX
and
area optimizations in certain portions of the design.
The design uses five AXI video direct memory access (VDMA) engines to simultaneously move
10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p
format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video
test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary
video timing signals. Data read by each AXI VDMA is sent to a common on-screen display
(OSD) core capable of multiplexing or overlaying multiple video streams to a single output video
stream. The output of the OSD core drives the DVI video display interface on the board.
Performance monitor blocks are added to capture performance data. All 10 video streams
moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are
controlled by a MicroBlaze™ processor.
The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the
Xilinx® ML605 Rev D evaluation board
Routine mampres: To obtain amplitude response from h(exp(jw)).
input parameters:
h :n dimensioned complex array. the frequency response is stored
in h(0) to h(n-1).
n :the dimension of h and amp.
fs :sampling frequency (Hz).
iamp:If iamp=0: The Amplitude Res. amp(k)=abs(h(k))
If iamp=1: The Amplitude Res. amp(k)=20.*alog10(abs(h(k))).
output parameters:
amp :n dimensioned real array. the amplitude-frequency response is
stored in amp(0) to amp(n-1).
Note:
this program will generate a data file "filename.dat" .
in chapter 2
Rotating shafts experience a an elliptical motion called whirl. It is important to decompose this motion into a forward and backward whil orbits. The current function makes use of two sensors to generate a bi-directional spectrogram. The method can be extended to any time-frequency distribution
%
% compute the forward/backward Campbell/specgtrogram
%
% INPUT:
% y (n x 2) each column is measured from a different sensor
% ///////
% __
% |s1| y(:,1)
% |__|
% __
% / \ ________|/
% | | | s2 |/ y(:,2)
% \____/ --------|/
%
% Fs Sampling frequnecy
%
% OUTPUT:
% B spectrogram/Campbel diagram
% x x-axis coordinate vector (time or Speed)
% y y-axis coordinate vector (frequency [Hz])