ECHNICAL COMMITTEE No. 65: INDUSTRIAL-PROCESS MEASUREMENT AND CONTROL WORKING GROUP 6 VOTING DRAFT - PUBLICLY AVAILABLE SPECIFICATION - FUNCTION BLOCKS FOR INDUSTRIAL-PROCESS MEASUREMENT AND CONTROL SYSTEMS
標簽: INDUSTRIAL-PROCESS MEASUREMENT COMMITTEE ECHNICAL
上傳時間: 2014-10-28
上傳用戶:源弋弋
ECHNICAL COMMITTEE No. 65: INDUSTRIAL-PROCESS MEASUREMENT AND CONTROL WORKING GROUP 6 VOTING DRAFT - PUBLICLY AVAILABLE SPECIFICATION - FUNCTION BLOCKS FOR INDUSTRIAL-PROCESS MEASUREMENT AND CONTROL SYSTEMS
標簽: INDUSTRIAL-PROCESS MEASUREMENT COMMITTEE ECHNICAL
上傳時間: 2015-02-11
上傳用戶:baiom
ECHNICAL COMMITTEE No. 65: INDUSTRIAL-PROCESS MEASUREMENT AND CONTROL WORKING GROUP 6 VOTING DRAFT - PUBLICLY AVAILABLE SPECIFICATION - FUNCTION BLOCKS FOR INDUSTRIAL-PROCESS MEASUREMENT AND CONTROL SYSTEMS
標簽: INDUSTRIAL-PROCESS MEASUREMENT COMMITTEE ECHNICAL
上傳時間: 2013-12-27
上傳用戶:frank1234
基于LabVIEW2012FPGA模式的數據采集和存儲系統摘 要:為了提高數據采集系統精度,減少開發成本,提高開發效率,基于LabVIEW虛擬儀器開發工具研究并設計了一 種數據采集系統。該系統采用FPGA編程模式和網絡流技術實現大批量數據實時傳輸,并對數據進行分析處理和存儲。系 統硬件采用美國NI實時控制器CRIO?9025,實現16路數據可靠采集與存儲。實驗仿真及實際運行結果表明該數據采集系 統能夠精確地對數據進行實時采集以及分析處理,達到了項目要求。 關鍵詞:FPGA;FIFO;網絡流;數據采集系統;SQL數據庫 中圖分類號:TN98?34 文獻標識碼:A 文章編號:1004?373X(2014)14?0142?04 Data acquisition and storage system based on LabVIEW 2012FPGA pattern WANG Shu?dong1,2 ,WEI Kong?zhen1 ,LI Xiao?pei1 (1. College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China; 2. Gansu Key Laboratory for Advanced Industrial Process Control,Lanzhou 730050,China)
上傳時間: 2022-02-18
上傳用戶:
Many CAD users dismiss schematic capture as a necessary evil in the process of creating\r\nPCB layout but we have always disputed this point of view. With PCB layout now offering\r\nautomation of both component placement and track routing, getting the des
標簽: schematic necessary creating dismiss
上傳時間: 2013-09-25
上傳用戶:baiom
為了在工業生產及過程控制中準確測量溫度,設計了一種基于低功耗MSP430單片機的數字溫度計。整個系統通過單片機MSP430F1121A控制DS18B20讀取溫度,采用數碼管顯示,溫度傳感器DS18B20與單片機之間通過串口進行數據傳輸。MSP430系列單片機具有超低功耗,且外圍的整合性高,DS18B20只需一個端口即可實現數據通信,連接方便。通過多次實驗證明,該系統的測試結果與實際環境溫度一致,除了具有接口電路簡單、測量精度高、誤差小、可靠性高等特點外,其低成本、低功耗的特點使其擁有更廣闊的應用前景。 Abstract: In order to obtain accurate measuring temperature in industrial production and process control, a digital thermometer based on MSP430 MCU is designed. The system uses MSP430F1121A MCU to control DS18B20, and gets the temperature data, which is displayed on the LED. The temperature sensor DS18B20 and MCU transmit data through serial communication. MSP430 series has ultra-low power and high integration, DS18B20 only needs one port to achieve data communication. Through many experimental results prove, this system is consistent with actual environment temperature. The system has characteristics of interface circuit simple, high measuring accuracy, minor error, high reliability, besides, the characteristics of low cost and low power make it having vaster application prospect.
上傳時間: 2013-10-16
上傳用戶:wettetw
This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 圖Figure 1. Local Safety System
上傳時間: 2013-11-05
上傳用戶:維子哥哥
This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 圖Figure 1. Local Safety System
上傳時間: 2013-11-14
上傳用戶:zoudejile
The power of programmability gives industrial automation designers a highly efficient, cost-effective alternative to traditional motor control units (MCUs)。 The parallel-processing power, fast computational speeds, and connectivity versatility of Xilinx® FPGAs can accelerate the implementation of advanced motor control algorithms such as Field Oriented Control (FOC)。 Additionally, Xilinx devices lower costs with greater on-chip integration of system components and shorten latencies with high-performance digital signal processing (DSP) that can tackle compute-intensive functions such as PID Controller, Clark/Park transforms, and Space Vector PWM. The Xilinx Spartan®-6 FPGA Motor Control Development Kit gives designers an ideal starting point for evaluating time-saving, proven, motor-control reference designs. The kit also shortens the process of developing custom control capabilities, with integrated peripheral functions (Ethernet, PowerLink, and PCI® Express), a motor-control FPGA mezzanine card (FMC) with built-in Texas Instruments motor drivers and high-precision Delta-Sigma modulators, and prototyping support for evaluating alternative front-end circuitry.
上傳時間: 2013-10-28
上傳用戶:wujijunshi
Industrial Mathematics
上傳時間: 2015-01-20
上傳用戶:璇珠官人