The RT9018A/B is a high performance positive voltage regulator designed for use in applications requining very low Input voltage and very low dropout voltage at up to 3A(peak).
本軟件是關于MAX338, MAX339的英文數據手冊:MAX338, MAX339 8通道/雙4通道、低泄漏、CMOS模擬多路復用器
The MAX338/MAX339 are monolithic, CMOS analog multiplexers (muxes). The 8-channel MAX338 is designed to connect one of eight inputs to a common output by control of a 3-bit binary address. The dual, 4-channel MAX339 is designed to connect one of four inputs to a common output by control of a 2-bit binary address. Both devices can be used as either a mux or a demux. On-resistance is 400Ω max, and the devices conduct current equally well in both directions.
These muxes feature extremely low off leakages (less than 20pA at +25°C), and extremely low on-channel leakages (less than 50pA at +25°C). The new design offers guaranteed low charge injection (1.5pC typ) and electrostatic discharge (ESD) protection greater than 2000V, per method 3015.7. These improved muxes are pin-compatible upgrades for the industry-standard DG508A and DG509A. For similar Maxim devices with lower leakage and charge injection but higher on-resistance, see the MAX328 and MAX329.
This example provides a description of how to use the USART with hardware flowcontrol and communicate with the Hyperterminal.First, the USART2 sends the TxBuffer to the hyperterminal and still waiting fora string from the hyperterminal that you must enter which must end by '\r'character (keypad ENTER button). Each byte received is retransmitted to theHyperterminal. The string that you have entered is stored in the RxBuffer array. The receivebuffer have a RxBufferSize bytes as maximum.
The USART2 is configured as follow: - BaudRate = 115200 baud - Word Length = 8 Bits - One Stop Bit - No parity - Hardware flow control enabled (RTS and CTS signals) - Receive and transmit enabled - USART Clock disabled - USART CPOL: Clock is active low - USART CPHA: Data is captured on the second edge - USART LastBit: The clock pulse of the last data bit is not output to the SCLK pin
Applying power to a standard logic chip, SRAM, or EPROM, usually results in output pinstracking the applied voltage as it rises. Programmable logic attempts to emulate that behavior,but physics forbids perfect emulation, due to the device programmability. It requires care tospecify the pin behavior, because programmable parts encounter unknown variables – yourdesign and your power environment.
This application note describes how to build a system that can be used for determining theoptimal phase shift for a Double Data Rate (DDR) memory feedback clock. In this system, theDDR memory is controlled by a controller that attaches to either the OPB or PLB and is used inan embedded microprocessor application. This reference system also uses a DCM that isconfigured so that the phase of its output clock can be changed while the system is running anda GPIO core that controls that phase shift. The GPIO output is controlled by a softwareapplication that can be run on a PowerPC® 405 or Microblaze™ microprocessor.
This application note covers the design considerations of a system using the performance
features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The
design focuses on high system throughput through the AXI Interconnect core with F
MAX
and
area optimizations in certain portions of the design.
The design uses five AXI video direct memory access (VDMA) engines to simultaneously move
10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p
format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video
test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary
video timing signals. Data read by each AXI VDMA is sent to a common on-screen display
(OSD) core capable of multiplexing or overlaying multiple video streams to a single output video
stream. The output of the OSD core drives the DVI video display interface on the board.
Performance monitor blocks are added to capture performance data. All 10 video streams
moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are
controlled by a MicroBlaze™ processor.
The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the
Xilinx® ML605 Rev D evaluation board