Maxim Analog Essentials are a series of plug-in peripheral modules that allow engineers to quickly test, evaluate, and integrate Maxim components into their hardware/software designs. The modules electrically and physically conform to the Digilent Pmod™ InterfaCE specification and are compatible with any Digilent Pmod-compatible header.
Linear Technology’s High Frequency Product lineupincludes a variety of RF I/Q modulators. The purpose ofthis application note is to illustrate the circuits requiredto InterfaCE these modulators with several popular D/Aconverters. Such circuits typically are required to maximizethe voltage transfer from the DAC to the baseband inputsof the modulator, as well as provide some reconstructionfi ltering.
This reference design (RD) features a fullyassembled and tested surface-mount printed circuitboard (PCB). The RD board utilizes the MAX48851:2 or 2:1 multiplexer and other ICs to implement acomplete video graphics array (VGA) 8:1multiplexer.VGA input/output connections are provided to easilyInterfaCE the MAX4885 RD board with VGAcompatibledevices. The RD board gives the optionto use a single 5V DC power supply (V+), or this RDboard can be powered from any one of the eight VGA sources.
The MAX14885E, a 2:2 VGA switch, connects a VGA source to a VGA monitor. To ease direct connection to graphics controllers orthe ASIC, the MAX14885E has two supplies: VCC, a 5V ±5% supply, drives the VGA side InterfaCE; and the VL supply sets the logicswitching thresholds on the digital input pins (EN, S00, S01, S10, S11, SHA, SHB, SVA, and SVB). This application note documentsthe proper sequencing of the VCC and VL power supplies on power-up.
To this day, Power over Ethernet (PoE) continues to gainpopularity in today’s networking world. The 12.95Wdelivered to the Powered Device (PD) input supplied bythe Power Sourcing Equipment (PSE) is a universal supply.Each PD provides its own DC/DC conversion from anominal 48V supply, thus eliminating the need for a correctvoltage wall adapter. However, higher power devicescan not take advantage of standard PoE because of itspower limitations, and must rely on a large wall adapteras their primary supply. The new LTC4268-1 breaks thispower barrier by allowing for power of up to 35W for suchpower-hungry 2-pair PoE applications. The LTC4268-1provides a complete solution by integrating a high powerPD InterfaCE control with an isolated fl yback controller.
Handheld designers often grapple with ways to de-bounceand control the on/off pushbutton of portable devices.Traditional de-bounce designs use discrete logic, fl ipflops, resistors and capacitors. Other designs includean onboard microprocessor and discrete comparatorswhich continuously consume battery power. For highvoltage multicell battery applications, a high voltageLDO is needed to drive the low voltage devices. All thisextra circuitry not only increases required board spaceand design complexity, but also drains the battery whenthe handheld device is turned off. Linear Technology addressesthis pushbutton InterfaCE challenge with a pairof tiny pushbutton controllers.
The LTC®4151 is a high side power monitor that includesa 12-bit ADC for measuring current and voltage, as wellas the voltage on an auxiliary input. Data is read throughthe widely used I2C InterfaCE. An unusual feature in thisdevice is its 7V to 80V operating range, allowing it to coverapplications from 12V automotive to 48V telecom.