K-均值聚類算法的編程實現。包括逐點聚類和批處理聚類。K-均值聚類的的時間復雜度是n*k*m
K-均值聚類算法的編程實現。包括逐點聚類和批處理聚類。K-均值聚類的的時間復雜度是n*k*m,其中n為樣本數,k為類別數,m為樣本維數。這個時間復雜度是相當客觀的。因為如果用每秒10億次的計算機對50個樣本采用窮舉法分兩類,尋找最優,列舉一遍約66.7天,分成3類,則要約3500萬年。針對算法局部最...
K-均值聚類算法的編程實現。包括逐點聚類和批處理聚類。K-均值聚類的的時間復雜度是n*k*m,其中n為樣本數,k為類別數,m為樣本維數。這個時間復雜度是相當客觀的。因為如果用每秒10億次的計算機對50個樣本采用窮舉法分兩類,尋找最優,列舉一遍約66.7天,分成3類,則要約3500萬年。針對算法局部最...
由于K-均值聚類算法局部最優的特點,而模擬退火算法理論上具有全局最優的特點。因此,用模擬退火算法對聚類進行了改進。20組聚類仿真表明,平均每次對K結果值改進8次左右,效果顯著。下一步工作:實際上在高溫區隨機生成鄰域是個組合爆炸問題(見本人上載軟件‘k-均值聚類算法’所述),高溫跳出局部解的概率幾乎為...
k均值聚類算法源碼,比較經典,無解壓密碼...
是K均值算法的一個Linux下的編譯的程序,用標準C++編寫的...
數據挖掘中K均值算法的實現用MATLAB編寫...