-
特點(FEATURES) 精確度0.1%滿刻度 (Accuracy 0.1%F.S.) 可作各式數學演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A| (Math functioA+B/A-B/AxB/A/B/A&B(Hi&Lo)/|A|/etc.....) 16 BIT 類比輸出功能(16 bit DAC isolating analog output function) 輸入/輸出1/輸出2絕緣耐壓2仟伏特/1分鐘(Dielectric strength 2KVac/1min. (input/output1/output2/power)) 寬范圍交直流兩用電源設計(Wide input range for auxiliary power) 尺寸小,穩定性高(Dimension small and High stability)
標簽:
微電腦
數學演算
輸出
隔離傳送器
上傳時間:
2013-11-24
上傳用戶:541657925
-
#include<iom16v.h>
#include<macros.h>
#define uint unsigned int
#define uchar unsigned char
uint a,b,c,d=0;
void delay(c)
{ for for(a=0;a<c;a++)
for(b=0;b<12;b++);
};
uchar tab[]={
0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,
標簽:
AVR
單片機
數碼管
上傳時間:
2013-10-21
上傳用戶:13788529953
-
題目:利用條件運算符的嵌套來完成此題:學習成績>=90分的同學用A表示,60-89分之間的用B表示,60分以下的用C表示。 1.程序分析:(a>b)?a:b這是條件運算符的基本例子。
標簽:
gt
90
運算符
嵌套
上傳時間:
2015-01-08
上傳用戶:lifangyuan12
-
RSA算法 :首先, 找出三個數, p, q, r, 其中 p, q 是兩個相異的質數, r 是與 (p-1)(q-1) 互質的數...... p, q, r 這三個數便是 person_key,接著, 找出 m, 使得 r^m == 1 mod (p-1)(q-1)..... 這個 m 一定存在, 因為 r 與 (p-1)(q-1) 互質, 用輾轉相除法就可以得到了..... 再來, 計算 n = pq....... m, n 這兩個數便是 public_key ,編碼過程是, 若資料為 a, 將其看成是一個大整數, 假設 a < n.... 如果 a >= n 的話, 就將 a 表成 s 進位 (s
標簽:
person_key
RSA
算法
上傳時間:
2013-12-14
上傳用戶:zhuyibin
-
The government of a small but important country has decided that the alphabet needs to be streamlined and reordered. Uppercase letters will be eliminated. They will issue a royal decree in the form of a String of B and A characters. The first character in the decree specifies whether a must come ( B )Before b in the new alphabet or ( A )After b . The second character determines the relative placement of b and c , etc. So, for example, "BAA" means that a must come Before b , b must come After c , and c must come After d .
Any letters beyond these requirements are to be excluded, so if the decree specifies k comparisons then the new alphabet will contain the first k+1 lowercase letters of the current alphabet.
Create a class Alphabet that contains the method choices that takes the decree as input and returns the number of possible new alphabets that conform to the decree. If more than 1,000,000,000 are possible, return -1.
Definition
標簽:
government
streamline
important
alphabet
上傳時間:
2015-06-09
上傳用戶:weixiao99
-
上下文無關文法(Context-Free Grammar, CFG)是一個4元組G=(V, T, S, P),其中,V和T是不相交的有限集,S∈V,P是一組有限的產生式規則集,形如A→α,其中A∈V,且α∈(V∪T)*。V的元素稱為非終結符,T的元素稱為終結符,S是一個特殊的非終結符,稱為文法開始符。
設G=(V, T, S, P)是一個CFG,則G產生的語言是所有可由G產生的字符串組成的集合,即L(G)={x∈T* | Sx}。一個語言L是上下文無關語言(Context-Free Language, CFL),當且僅當存在一個CFG G,使得L=L(G)。 *⇒
例如,設文法G:S→AB
A→aA|a
B→bB|b
則L(G)={a^nb^m | n,m>=1}
其中非終結符都是大寫字母,開始符都是S,終結符都是小寫字母。
標簽:
Context-Free
Grammar
CFG
上傳時間:
2013-12-10
上傳用戶:gaojiao1999
-
We have a group of N items (represented by integers from 1 to N), and we know that there is some total order defined for these items. You may assume that no two elements will be equal (for all a, b: a<b or b<a). However, it is expensive to compare two items. Your task is to make a number of comparisons, and then output the sorted order. The cost of determining if a < b is given by the bth integer of element a of costs (space delimited), which is the same as the ath integer of element b. Naturally, you will be judged on the total cost of the comparisons you make before outputting the sorted order. If your order is incorrect, you will receive a 0. Otherwise, your score will be opt/cost, where opt is the best cost anyone has achieved and cost is the total cost of the comparisons you make (so your score for a test case will be between 0 and 1). Your score for the problem will simply be the sum of your scores for the individual test cases.
標簽:
represented
integers
group
items
上傳時間:
2016-01-17
上傳用戶:jeffery
-
實驗源代碼
//Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("請輸入矩陣第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可傳遞閉包關系矩陣是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元關系的可傳遞閉包\n"); void warshall(int,int); int k , n; printf("請輸入矩陣的行數 i: "); scanf("%d",&k);
四川大學實驗報告 printf("請輸入矩陣的列數 j: "); scanf("%d",&n); warshall(k,n); }
標簽:
warshall
離散
實驗
上傳時間:
2016-06-27
上傳用戶:梁雪文以
-
#include "iostream" using namespace std;
class Matrix
{
private:
double** A; //矩陣A
double *b; //向量b
public:
int size;
Matrix(int );
~Matrix();
friend double* Dooli(Matrix& );
void Input();
void Disp();
};
Matrix::Matrix(int x) {
size=x;
//為向量b分配空間并初始化為0
b=new double [x];
for(int j=0;j<x;j++)
b[j]=0;
//為向量A分配空間并初始化為0
A=new double* [x];
for(int i=0;i<x;i++)
A[i]=new double [x];
for(int m=0;m<x;m++)
for(int n=0;n<x;n++)
A[m][n]=0;
}
Matrix::~Matrix() {
cout<<"正在析構中~~~~"<<endl;
delete b;
for(int i=0;i<size;i++)
delete A[i];
delete A;
}
void Matrix::Disp()
{
for(int i=0;i<size;i++)
{
for(int j=0;j<size;j++)
cout<<A[i][j]<<" ";
cout<<endl;
}
}
void Matrix::Input()
{
cout<<"請輸入A:"<<endl;
for(int i=0;i<size;i++)
for(int j=0;j<size;j++){
cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl;
cin>>A[i][j];
}
cout<<"請輸入b:"<<endl;
for(int j=0;j<size;j++){
cout<<"第"<<j+1<<"個:"<<endl;
cin>>b[j];
}
}
double* Dooli(Matrix& A) {
double *Xn=new double [A.size];
Matrix L(A.size),U(A.size);
//分別求得U,L的第一行與第一列
for(int i=0;i<A.size;i++)
U.A[0][i]=A.A[0][i];
for(int j=1;j<A.size;j++)
L.A[j][0]=A.A[j][0]/U.A[0][0];
//分別求得U,L的第r行,第r列
double temp1=0,temp2=0;
for(int r=1;r<A.size;r++){
//U
for(int i=r;i<A.size;i++){
for(int k=0;k<r-1;k++)
temp1=temp1+L.A[r][k]*U.A[k][i];
U.A[r][i]=A.A[r][i]-temp1;
}
//L
for(int i=r+1;i<A.size;i++){
for(int k=0;k<r-1;k++)
temp2=temp2+L.A[i][k]*U.A[k][r];
L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r];
}
}
cout<<"計算U得:"<<endl;
U.Disp();
cout<<"計算L的:"<<endl;
L.Disp();
double *Y=new double [A.size];
Y[0]=A.b[0];
for(int i=1;i<A.size;i++ ){
double temp3=0;
for(int k=0;k<i-1;k++)
temp3=temp3+L.A[i][k]*Y[k];
Y[i]=A.b[i]-temp3;
}
Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1];
for(int i=A.size-1;i>=0;i--){
double temp4=0;
for(int k=i+1;k<A.size;k++)
temp4=temp4+U.A[i][k]*Xn[k];
Xn[i]=(Y[i]-temp4)/U.A[i][i];
}
return Xn;
}
int main()
{
Matrix B(4);
B.Input();
double *X;
X=Dooli(B);
cout<<"~~~~解得:"<<endl;
for(int i=0;i<B.size;i++)
cout<<"X["<<i<<"]:"<<X[i]<<" ";
cout<<endl<<"呵呵呵呵呵";
return 0;
}
標簽:
道理特分解法
上傳時間:
2018-05-20
上傳用戶:Aa123456789
-
常用芯片表貼芯片表貼電阻電容STM封裝庫AD庫(ATIUM PCB封裝庫):PCB Library : 常用芯片表貼芯片表貼電阻電容STM封裝庫AD庫(ATIUM PCB封裝庫).PcbLibDate : 2021/5/14Time : 16:14:01Component Count : 463Component Name-----------------------------------------------LC-12-DIPH-300LC-0201LC-0201_CLC-0201_LLC-0201_RLC-0402LC-0402_CLC-0402_LLC-0402_RLC-0402_Rx2LC-0402_Rx4LC-0603LC-0603_CLC-0603_Cx4LC-0603_LLC-0603_LEDLC-0603_RLC-0603_Rx2LC-0603_Rx4LC-0805LC-0805_CLC-0805_LLC-0805_LEDLC-0805_RLC-1206LC-1206_CLC-1206_LLC-1206_RLC-1210LC-1210_CLC-1210_RLC-1806LC-1806_CLC-1806_LLC-1806_RLC-1808LC-1808_CLC-1808_LLC-1808_RLC-1812LC-1812_CLC-1812_LLC-1812_RLC-1825LC-1825_CLC-1825_LLC-1825_RLC-2010LC-2010_CLC-2010_LLC-2010_RLC-2220LC-2220_CLC-2220_LLC-2220_RLC-2225LC-2225_CLC-2225_RLC-2512LC-2512_CLC-2512_LLC-2512_RLC-ABSLC-BGA-14LC-BGA-84_7.5x12.5mmLC-BGA-121LC-BGA-143LC-BR-3LC-BR-6LC-BR-10LC-CASE 017AA-01LC-CASE-A_3216LC-CASE-B_3528LC-CASE-C_6032LC-CASE-D_7343LC-CASE-E_7343LC-CASE-P_2012LC-CASE-R_2012LC-DBLC-DBSLC-DFN-2LLC-DFN-8_3x3mmLC-DFN-8_5x6mmLC-DFN-10_3x3mmLC-DFN-10_EP_3x3mmLC-DIP-4LC-DIP-5LC-DIP-6LC-DIP-7LC-DIP-8LC-DIP-14LC-DIP-16LC-DIP-18LC-DIP-20LC-DIP-24_300milLC-DIP-24_600milLC-DIP-28_300milLC-DIP-28_600milLC-DIP-40LC-DO-15LC-DO-27LC-DO-35LC-DO-41LC-DO-201ADLC-DO-213AALC-DO-213ABLC-DO-218ABLC-DSON-10LC-FBGA-84_9x12.5mmLC-FBGA-96_8x14mmLC-FBGA-256LC-FBGA-272LC-FBGA-289LC-FBGA-484LC-FBGA-780LC-GBJLC-GBULC-GDTs_SMDLC-GDTs_THTLC-HC-49SLC-HC-49SMDLC-HC-49ULC-HTSSOP-32LC-HVMDIPLC-HVQFN-32_5x5x05PLC-HZIP25-P-1.27LC-KBJLC-KBLLC-KBPLC-KBPCLC-KBULC-LBSLC-LFBGA-217LC-LFCSP-8_3x2x05PLC-LFCSP-8_3x3x05PLC-LFCSP-16_4x4x05PLC-LFCSP-20_4x4x05PLC-LFCSP-24_4x4x05PLC-LFCSP-28_5x5x05PLC-LFCSP40_6x6x05PLC-LFCSP56_8x8x05PLC-LGA-8_3x5mmLC-LGA-14_3x5mmLC-LGA-16_3x3mmLC-LGA-16_4x4mmLC-LL-34LC-LL-35LC-LL-41LC-LPCC-148LC-LQFP-32_7x7x08PLC-LQFP-44_10x10x08PLC-LQFP-48_7x7x05P
標簽:
芯片
電阻
電容
stm
封裝
上傳時間:
2021-12-02
上傳用戶: