n this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of the ABC network should complement the UAI2000 paper by Arnaud Doucet, Nando de Freitas, Kevin Murphy and Stuart Russell. After downloading the file, type "tar -xf demorbpfdbn.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load matlab5 and type "dbnrbpf" for the demo.
標簽: Rao-Blackwellised conditional filtering particle
上傳時間: 2013-12-17
上傳用戶:zhaiyanzhong
On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
標簽: demonstrates sequential Selection Bayesian
上傳時間: 2016-04-07
上傳用戶:lindor
In this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of the ABC network should complement the UAI2000 paper by Arnaud Doucet, Nando de Freitas, Kevin Murphy and Stuart Russell. After downloading the file, type "tar -xf demorbpfdbn.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load matlab5 and type "dbnrbpf" for the demo.
標簽: Rao-Blackwellised conditional filtering particle
上傳時間: 2013-12-14
上傳用戶:小儒尼尼奧
This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
標簽: sequential reversible algorithm nstrates
上傳時間: 2014-01-18
上傳用戶:康郎
This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
標簽: reversible algorithm the nstrates
上傳時間: 2014-01-08
上傳用戶:cuibaigao
Implement the following integer methods: a) Method celsius returns the Celsius equivalent of a Fahrenheit calculation celsius = 5.0 / 9.0 * ( fahrenheit - 32 ) b) Method fahrenheit returns the Fahrenheit equivalent of a Celsius the calculation fahrenheit = 9.0 / 5.0 * celsius + 32 c) Use the methods from parts (a) and (b) to write an application either to enter a Fahrenheit temperature and display the Celsius or to enter a Celsius temperature and display the Fahrenheit equivalent.
標簽: equivalent Implement the following
上傳時間: 2014-01-19
上傳用戶:jackgao
根據DFT的基二分解方法,可以發現在第L(L表示從左到右的運算級數,L=1,2,3…M)級中,每個蝶形的兩個輸入數據相距B=2^(L-1)個點,同一旋轉因子對應著間隔為2^L點的2^(M-L)個蝶形。從輸入端開始,逐級進行,共進行M級運算。在進行L級運算時,依次求出個2^(L-1)不同的旋轉因子,每求出一個旋轉因子,就計算完它對應的所有的2^(M-L)個蝶形。因此我們可以用三重循環程序實現FFT變換。同一級中,每個蝶形的兩個輸入數據只對本蝶形有用,而且每個蝶形的輸入、輸出數據節點又同在一條水平線上,所以輸出數據可以立即存入原輸入數據所占用的存儲單元。這種方法可稱為原址計算,可節省大量的存儲單元。附件包含算法流程圖和源程序。
上傳時間: 2013-12-25
上傳用戶:qiao8960
基于J2EE的物流信息系統的設計與實現 介紹了J2EE 體系結構、Mv c模式等相關概念和技術,并重點探討了 目 前比 較受歡迎的三種開源框架( s t r ut s框架、S Pr i n g框架和H i b e m a t e 框架)。 分析了他們的體系結構、 特點和優缺點。 根據J ZE E的分層結構,結合We b應用 的特點, 將三種框架進行組合設計, 即表現層用S t r ut s框架、 業務邏輯層用S P ri n g 框架、持久層用比b ema t e 框架,從而來構建物流信息系統。這種整合框架使各 層相對獨立, 減少各層之間的禍合程度,同時加快了系統的開發過程,增強了系 統的可維護性和可擴展性,初步達到了分布式物流信息系統的設計目標。 經過以上分析,結合物流系統的業務需求,進行了相關的實現。最后,系統 運用先進的A ja x技術來增強Ui層與服務器的異步通信能力, 使用戶體驗到動態 且響應靈 敏的桌 面級w e b應用程序。 通過江聯公司的試運行結果,系統達到了 渝瞇。 并 且 對 江 聯 公 司 提 出 了 基 于 R F I D 的 解 決 方 案 的 實 施 計 劃 。
上傳時間: 2016-06-01
上傳用戶:ynsnjs
基于J2EE技術的網上商城系統構建 本課題以國家8 6 3引導項目 , 暨新疆自治區高新計劃項目 — 廣匯美居物流園網上 商城系統為背景。旨 在利用先進的系統建模思想以及當前流行的We b編程技術,將迭 代式、以用戶需求為驅動和以構架為中心的R U P統一開發過程的系統建模思想應用到 電子商務系統模型的需求分析和設計的各個階段, 完整地實現整個系統的建模過程。 在 此基礎上對系統實現的關鍵技術問題:數據庫的并發訪問,MV C模式的應用以及統計 信息的圖表顯示等關鍵技術進行了具體的分析和實現。 本文利用I nt e 川 e 吸 的強大功能,借鑒國內外電子商務方面的相關經驗,分析虛擬店 鋪,網上商城及網上拍賣的功能結構和實現方式, 為廣匯美居物流園的商戶搭建網上虛 擬店鋪,網上商城及網上商品竟拍系統平臺。該系統經過近半年的使用,實際應用效果 較好。采用的R U P開發方法和M V c的設計模式使系統的靈活性和可擴展性大大增強。
上傳時間: 2014-12-03
上傳用戶:edisonfather
對于給定的一組進程,采用優先級加時間片輪轉法進行調度。設有一個就緒隊列,就緒進程按優先數(優先數范圍0-100)由小到大排列(優先數越小,級別越高)。當某一進程運行完一個時間片后,其優先級應下調(如優先數加3),試對如下給定的一組進程給出其調度順序。每當結束一進程時要給出當前系統的狀態(即顯示就緒隊列)。這里,進程可用進程控制塊(PCB)表示為如右表所示。 進程名 A B C D E F G H J K L M 到達時間 0 1 2 3 6 8 12 12 12 18 25 25 服務時間 6 4 10 5 1 2 5 10 4 3 15 8
標簽: 進程
上傳時間: 2014-01-13
上傳用戶:chfanjiang