亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

MATLAB5

  • 關于matlab偏微分方程工具箱函數功能介紹

    關于matlab偏微分方程工具箱函數功能介紹,適用于MATLAB5.3以上版本。

    標簽: matlab 偏微分方程 工具箱 函數

    上傳時間: 2014-01-24

    上傳用戶:bjgaofei

  • 關于matlab數字信號處理的例程介紹

    關于matlab數字信號處理的例程介紹,適用于MATLAB5.3以上版本。

    標簽: matlab 數字信號處理

    上傳時間: 2014-03-02

    上傳用戶:anng

  • n this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional inde

    n this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of the ABC network should complement the UAI2000 paper by Arnaud Doucet, Nando de Freitas, Kevin Murphy and Stuart Russell. After downloading the file, type "tar -xf demorbpfdbn.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load MATLAB5 and type "dbnrbpf" for the demo.

    標簽: Rao-Blackwellised conditional filtering particle

    上傳時間: 2013-12-17

    上傳用戶:zhaiyanzhong

  • On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carl

    On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load MATLAB5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    標簽: demonstrates sequential Selection Bayesian

    上傳時間: 2016-04-07

    上傳用戶:lindor

  • In this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional ind

    In this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of the ABC network should complement the UAI2000 paper by Arnaud Doucet, Nando de Freitas, Kevin Murphy and Stuart Russell. After downloading the file, type "tar -xf demorbpfdbn.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load MATLAB5 and type "dbnrbpf" for the demo.

    標簽: Rao-Blackwellised conditional filtering particle

    上傳時間: 2013-12-14

    上傳用戶:小儒尼尼奧

  • In this demo, I use the EM algorithm with a Rauch-Tung-Striebel smoother and an M step, which I ve r

    In this demo, I use the EM algorithm with a Rauch-Tung-Striebel smoother and an M step, which I ve recently derived, to train a two-layer perceptron, so as to classify medical data (kindly provided by Steve Roberts and Will Penny from EE, Imperial College). The data and simulations are described in: Nando de Freitas, Mahesan Niranjan and Andrew Gee Nonlinear State Space Estimation with Neural Networks and the EM algorithm After downloading the file, type "tar -xf EMdemo.tar" to uncompress it. This creates the directory EMdemo containing the required m files. Go to this directory, load MATLAB5 and type "EMtremor". The figures will then show you the simulation results, including ROC curves, likelihood plots, decision boundaries with error bars, etc. WARNING: Do make sure that you monitor the log-likelihood and check that it is increasing. Due to numerical errors, it might show glitches for some data sets.

    標簽: Rauch-Tung-Striebel algorithm smoother which

    上傳時間: 2016-04-15

    上傳用戶:zhenyushaw

  • This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps t

    This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load MATLAB5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    標簽: sequential reversible algorithm nstrates

    上傳時間: 2014-01-18

    上傳用戶:康郎

  • This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hier

    This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load MATLAB5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    標簽: reversible algorithm the nstrates

    上傳時間: 2014-01-08

    上傳用戶:cuibaigao

  • The algorithms are coded in a way that makes it trivial to apply them to other problems. Several gen

    The algorithms are coded in a way that makes it trivial to apply them to other problems. Several generic routines for resampling are provided. The derivation and details are presented in: Rudolph van der Merwe, Arnaud Doucet, Nando de Freitas and Eric Wan. The Unscented Particle Filter. Technical report CUED/F-INFENG/TR 380, Cambridge University Department of Engineering, May 2000. After downloading the file, type "tar -xf upf_demos.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load MATLAB5 and type "demo_MC" for the demo.

    標簽: algorithms problems Several trivial

    上傳時間: 2014-01-20

    上傳用戶:royzhangsz

  • 該程序提供了多種參數的雙指數脈沖函數的波形及其頻譜分解圖

    該程序提供了多種參數的雙指數脈沖函數的波形及其頻譜分解圖,要注意的是作圖時坐標比例尺的調整。程序中給出的是1.2/50μs和0.7/60ns兩種波形可直接使用的坐標比例尺。 在MATLAB5.0下就能工作。

    標簽: 程序 參數 函數 分解

    上傳時間: 2016-04-21

    上傳用戶:as275944189

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲欧美综合| 亚洲欧美日本国产有色| 国产精品免费视频观看| 国产女同一区二区 | 国产精品综合色区在线观看| 国产一区二区精品| 夜色激情一区二区| 久久亚洲一区二区| 国产精品一区二区三区久久| 亚洲免费成人av电影| 久久久亚洲国产天美传媒修理工| 欧美精品大片| 亚洲第一黄色网| 欧美在线资源| 国产精品午夜在线观看| 一区二区三区日韩| 欧美日韩黄色大片| 日韩视频免费观看高清在线视频 | 欧美专区在线观看| 欧美性大战久久久久久久蜜臀| 国内精品久久久久影院薰衣草| 亚洲一本大道在线| 欧美日韩免费观看一区三区| 最近中文字幕日韩精品| 狂野欧美性猛交xxxx巴西| 国产午夜精品在线| 午夜电影亚洲| 国产久一道中文一区| 亚洲欧美日韩国产中文| 国产精品你懂的| 亚洲欧美www| 国产裸体写真av一区二区| 亚洲女人小视频在线观看| 国产精品高潮呻吟久久| 亚洲在线播放电影| 国产精品一卡二卡| 欧美在线视频二区| 在线成人h网| 欧美精品乱码久久久久久按摩| 亚洲人体偷拍| 欧美性事在线| 久久国产一区二区三区| 精久久久久久| 欧美激情在线观看| 亚洲欧美国内爽妇网| 国产日韩欧美另类| 久久男女视频| 91久久久久| 欧美色区777第一页| 午夜国产精品影院在线观看 | 国产精品久久久久一区| 亚洲欧美一区二区三区久久| 国产日韩在线不卡| 欧美成人精品| 亚洲欧美国产日韩天堂区| 国产综合在线视频| 欧美精品一区二区三区四区| 先锋影音网一区二区| 亚洲精品123区| 国产精品揄拍500视频| 免费不卡在线视频| 午夜精品999| 亚洲精品国产精品国自产在线| 欧美香蕉大胸在线视频观看| 美女诱惑黄网站一区| 一区二区三区毛片| 亚洲国内高清视频| 国产伦精品一区二区三区免费 | 亚洲一级二级| 怡红院精品视频| 欧美亚洲第一区| 玖玖玖国产精品| 香蕉av777xxx色综合一区| 亚洲国产精品一区制服丝袜| 国产精品视频一区二区三区| 欧美大秀在线观看| 久久免费高清| 欧美在线高清视频| 中文亚洲视频在线| 亚洲精品资源美女情侣酒店| 狠狠入ady亚洲精品| 国产精品美女一区二区在线观看| 你懂的网址国产 欧美| 久久精品亚洲国产奇米99| 亚洲一区一卡| 亚洲视频精选| 一本久久综合| 亚洲伦理一区| 亚洲另类自拍| 亚洲乱码精品一二三四区日韩在线 | 国产一区二区久久精品| 欧美日韩高清在线播放| 免费一级欧美片在线播放| 久久精品人人爽| 欧美在线免费观看亚洲| 午夜久久资源| 性欧美大战久久久久久久免费观看 | 欧美国产综合视频| 久久综合色影院| 欧美中文字幕在线播放| 久久av一区二区三区漫画| 亚洲自拍另类| 欧美在线3区| 久久这里有精品视频| 久久九九电影| 免费不卡视频| 欧美精品一区二区高清在线观看| 欧美激情精品久久久六区热门 | 欧美在线黄色| 欧美在线一级视频| 久久久久久久久蜜桃| 久久青青草综合| 欧美大片免费| 欧美性感一类影片在线播放| 国产精品日韩欧美一区二区三区 | 欧美在线观看网站| 久久精品伊人| 欧美电影免费观看高清| 欧美精品一区二区视频| 国产精品地址| 国产综合久久久久影院| 亚洲国产日韩一区二区| 99精品视频免费在线观看| 亚洲一区三区视频在线观看| 欧美一级视频| 欧美国产高清| 欧美性jizz18性欧美| 国产欧美一区二区白浆黑人| 在线日本成人| 亚洲一区免费| 美日韩精品免费| 国产精品福利av| 黄色av日韩| 亚洲视频日本| 久久蜜臀精品av| 国产精品高潮粉嫩av| 在线观看日韩欧美| 亚洲一区二区三区视频播放| 欧美一级在线亚洲天堂| 久色成人在线| 国产精品伊人日日| 在线欧美一区| 午夜天堂精品久久久久| 免费亚洲一区| 国产欧美在线| 亚洲精品在线三区| 欧美一区二区三区四区在线 | 亚洲成人影音| 国产精品一卡二卡| 狠狠干狠狠久久| 一本色道久久| 蜜臀久久久99精品久久久久久 | 欧美大尺度在线| 国产一区二区三区免费在线观看| 亚洲精品美女| 久久亚洲综合| 国内精品久久久久久久影视麻豆| 亚洲一级免费视频| 欧美日韩一区视频| 日韩午夜激情av| 欧美成人激情视频免费观看| 好看的日韩视频| 欧美综合第一页| 国产精品夜夜夜| 亚洲专区在线视频| 国产精品成人免费| 9色国产精品| 欧美视频久久| 国产精品99久久久久久久久久久久| 欧美成人性生活| 1024国产精品| 欧美激情一区二区三区在线视频观看| 国产专区精品视频| 久久精品亚洲精品国产欧美kt∨| 在线观看中文字幕不卡| 日韩视频在线播放| 免费成人黄色片| 精品成人a区在线观看| 久久久欧美精品sm网站| 亚洲每日在线| 亚洲大胆人体在线| 久热精品视频在线| 亚洲国产精品久久久久| 欧美jizzhd精品欧美喷水| 国产日韩精品一区| 在线观看一区视频| 欧美成人激情视频免费观看| 国产精品视频免费观看www| 亚洲一区二区三区视频播放| 欧美h视频在线| 国产精品视频免费| 亚洲国产精品va在线观看黑人| 娇妻被交换粗又大又硬视频欧美| 黑丝一区二区三区| 欧美激情91| 一本大道久久精品懂色aⅴ| 欧美成人一区二免费视频软件| 国内自拍视频一区二区三区| 欧美日本在线看| 亚洲伦伦在线|