The current METHODS of communications are becoming less relevant under
today’s growing demand for and reliance on constant connectivity. Of
decreasing relevance are the models of a single radio to perform a single
task. The expansion of wireless access points among coffee shops, airports,
malls, and other public arenas is opening up opportunities for new services
and applications.
Traditional modulation METHODS adopted by space agencies for transmit-
ting telecommand and telemetry data have incorporated subcarriers as a sim-
ple means of separating different data types as well ensuring no overlap
between the radio frequency (RF) carrier and the modulated data’s frequency
spectra.
The growing interest for high data rate wireless communications over the last few decades
gave rise to the emergence of a number of wideband wireless systems. The resulting scarcity
of frequency spectrum has been forcing wireless system designers to develop METHODS that
will push the spectral efficiency to its limit.
When joining Siemens in 2001, I also extended my research interest towards radio net-
work planning methodologies. This area of research brought together my personal interest
in mobile communications and in the design of efficient algorithms and data structures.
Between 2001 and 2003, I participated in the EU project Momentum, which was target-
ing the performance evaluation and optimization of UMTS radio networks. I
The objective of this book is to allow the reader to predict the received
signal power produced by a particular radio transmitter. The first two
chapters examine propagation in free space for point-to-point and
point-to-area transmission, respectively. This is combined with a dis-
cussion regarding the characteristics of antennas for various purposes. In
chapter 3, the effect of obstacles, whether buildings or mountains, is
discussed and analytical METHODS, whereby the strength of a signal is the
shadow of an obstacle can be predicted, are presented.
The ever-increasing demand for private and sensitive data transmission over wireless net-
works has made security a crucial concern in the current and future large-scale, dynamic,
and heterogeneous wireless communication systems. To address this challenge, computer
scientists and engineers have tried hard to continuously come up with improved crypto-
graphic algorithms. But typically we do not need to wait too long to find an efficient way
to crack these algorithms. With the rapid progress of computational devices, the current
cryptographic METHODS are already becoming more unreliable. In recent years, wireless re-
searchers have sought a new security paradigm termed physical layer security. Unlike the
traditional cryptographic approach which ignores the effect of the wireless medium, physi-
cal layer security exploits the important characteristics of wireless channel, such as fading,
interference, and noise, for improving the communication security against eavesdropping
attacks. This new security paradigm is expected to complement and significantly increase
the overall communication security of future wireless networks.
The continuing vitality of spread-spectrum communication systems and the devel-
opment of new mathematical METHODS for their analysis provided the motivation to
undertake this new edition of the book. This edition is intended to enable readers
to understand the current state-of-the-art in this field. Almost twenty percent of the
materialinthiseditionisnew, includingseveralnewsections, anewchapteronadap-
tive arrays and filters, and a new chapter on code-division multiple-access networks.
The continuing vitality of spread-spectrum communication systems and the devel-
opment of new mathematical METHODS for their analysis provided the motivation to
undertake this new edition of the book. This edition is intended to enable readers
to understand the current state-of-the-art in this field. Almost twenty percent of the
materialinthiseditionisnew, includingseveralnewsections, anewchapteronadap-
tive arrays and filters, and a new chapter on code-division multiple-access networks.
The remainder of the material has been thoroughly revised, and I have removed a
considerable amount of material that has been superseded by more definitive results.
T
his book covers basic communications theory and practical imple-
mentation of transmitters and receivers. In so doing, I focus on dig-
ital modulation, demodulation METHODS, probabilities, detection of
digital signals, and spread spectrum system design and analysis. This book
was written for those who want a good understanding of the basic prin-
ciples of digital wireless communication systems, including spread spec-
trum techniques. This book also provides a good intuitive and practical
approach to digital communications. Therefore it is a valuable resource for
anyoneinvolvedinwirelesscommunicationsandtransceiverdesignfordig-
ital communications. The reader will gain a broad understanding of basic
communication principles for transceiver design, digital communications,
and spread spectrum, along with examples of many types of commercial
and military data link systems.
The goal of this book is to introduce the simulation METHODS necessary to describe
the behaviour of semiconductor devices during an electrostatic discharge (ESD).
The challenge of this task is the correct description of semiconductor devices under
very high current density and high temperature transients. As it stands, the book
can be no more than a snapshot and a summary of the research in this field
during the past few years. The authors hope that the book will provide the basis
for further development of simulation METHODS at this current frontier of device
physics.