This is the Xilinx Dual Processor Reference Designs suite. The designs illustrate a few differentdual-core architectures based on the MICROBLAZE™ and PowerPC™ processors. The designsillustrate various concepts described in the Xilinx White Paper WP262 titled, “DesigningMultiprocessor Systems in Platform Studio”. There are simple software applications includedwith the reference designs that show various forms of interaction between the two processors.
This application note describes how to build a system that can be used for determining theoptimal phase shift for a Double Data Rate (DDR) memory feedback clock. In this system, theDDR memory is controlled by a controller that attaches to either the OPB or PLB and is used inan embedded microprocessor application. This reference system also uses a DCM that isconfigured so that the phase of its output clock can be changed while the system is running anda GPIO core that controls that phase shift. The GPIO output is controlled by a softwareapplication that can be run on a PowerPC® 405 or MICROBLAZE™ microprocessor.
This application note covers the design considerations of a system using the performance
features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The
design focuses on high system throughput through the AXI Interconnect core with F
MAX
and
area optimizations in certain portions of the design.
The design uses five AXI video direct memory access (VDMA) engines to simultaneously move
10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p
format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video
test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary
video timing signals. Data read by each AXI VDMA is sent to a common on-screen display
(OSD) core capable of multiplexing or overlaying multiple video streams to a single output video
stream. The output of the OSD core drives the DVI video display interface on the board.
Performance monitor blocks are added to capture performance data. All 10 video streams
moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are
controlled by a MICROBLAZE™ processor.
The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the
Xilinx® ML605 Rev D evaluation board
uC/OS-II Notes from Nohau Corporation
The code associated with this readme.txt file is provided "as is".
The code was written with the intention of creating a functional
RTOS demo for the Nohau evaluation boards that can run a MICROBLAZE
core. You can use this code for any and all of your projects, as
you see fit. Nohau Corporation does not warrant that the code is
bug-free, and will provide no support for this RTOS port.
Spartan 3 Digilent Demo:This demo drives the perphrials on the Spartan 3 board. This drives a simple pattern to the VGA port, connects the switches to the LEDs, buttons to each anode of the seven segment decoder. The seven segment decoder has a simple counter running on it, and when SW0 is in the up position the seven segment decoder will display scan codes from the PS2 port. This demo how ever does not drive the RS-232 port or the memory. This is a simple design done entirely VHDL not MICROBLAZE.