CHMMBOX, version 1.2, Iead Rezek, Oxford University, Feb 2001
Matlab toolbox for max. aposteriori estimation of two chain
Coupled Hidden Markov Models.
megahal is the conversation simulators conversing with a user in natural language. The program will exploit the fact that human beings tend to read much more meaning into what is said than is actually there
MegaHAL differs from conversation simulators such as ELIZA in that it uses
a Markov Model to learn how to hold a conversation. It is possible to
teach MegaHAL to talk about new topics, and in different languages.
Hidden_Markov_model_for_automatic_speech_recognition
This code implements in C++ a basic left-right hidden Markov model
and corresponding Baum-Welch (ML) training algorithm. It is meant as
an example of the HMM algorithms described by L.Rabiner (1) and
others. Serious students are directed to the sources listed below for
a theoretical description of the algorithm. KF Lee (2) offers an
especially good tutorial of how to build a speech recognition system
using hidden Markov models.
Hybrid Monte Carlo sampling.SAMPLES = HMC(F, X, OPTIONS, GRADF) uses a hybrid Monte Carlo
algorithm to sample from the distribution P ~ EXP(-F), where F is the
first argument to HMC. The Markov chain starts at the point X, and
the function GRADF is the gradient of the `energy function F.
Sequential Monte Carlo without Likelihoods
粒子濾波不用似然函數的情況下
本文摘要:Recent new methods in Bayesian simulation have provided ways of evaluating posterior distributions
in the presence of analytically or computationally intractable likelihood functions.
Despite representing a substantial methodological advance, existing methods based on rejection
sampling or Markov chain Monte Carlo can be highly inefficient, and accordingly
require far more iterations than may be practical to implement. Here we propose a sequential
Monte Carlo sampler that convincingly overcomes these inefficiencies. We demonstrate
its implementation through an epidemiological study of the transmission rate of tuberculosis.
This paper presents a Hidden Markov Model (HMM)-based speech
enhancement method, aiming at reducing non-stationary noise from speech
signals. The system is based on the assumption that the speech and the noise
are additive and uncorrelated. Cepstral features are used to extract statistical
information from both the speech and the noise. A-priori statistical
information is collected from long training sequences into ergodic hidden
Markov models. Given the ergodic models for the speech and the noise, a
compensated speech-noise model is created by means of parallel model
combination, using a log-normal approximation. During the compensation, the
mean of every mixture in the speech and noise model is stored. The stored
means are then used in the enhancement process to create the most likely
speech and noise power spectral distributions using the forward algorithm
combined with mixture probability. The distributions are used to generate a
Wiener filter for every observation. The paper includes a performance
evaluation of the speech enhancer for stationary as well as non-stationary
noise environment.