This a Bayesian ICA algorithm for the linear instantaneous mixing model with additive Gaussian noise [1]. The inference problem is solved by ML-II, i.e. the sources are found by integration over the source posterior and the noise covariance and mixing matrix are found by maximization of the marginal likelihood [1]. The sufficient statistics are estimated by either variational mean field theory with the linear response correction or by adaptive TAP mean field theory [2,3]. The mean field equations are solved by a belief propagation method [4] or sequential iteration. The computational complexity is N M^3, where N is the number of time samples and M the number of sources.
標簽: instantaneous algorithm Bayesian Gaussian
上傳時間: 2013-12-19
上傳用戶:jjj0202
數據挖掘算法,support vector machine算法源代碼,用于分類
標簽: 數據挖掘算法
上傳時間: 2015-04-11
上傳用戶:561596
For the incomplete methods, we kept the representation of the queens by a table and the method of calculation to determine if two queens are in conflict, which is much faster for this kind of problems than the representation by a matrix. heuristics: descent. Tests: 100 queens in less than 1 second and 67 iterations. 500 queens in 1 second and 257 iterations. 1000 queens in 11 seconds and 492 iterations. heuristics: Simulated annealing. Tests: 100 queens in less than 1 second and 47 iterations. 500 queens in 5 seconds and 243 iterations. 1000 queens in 13 seconds and 497 iterations. heuristics: based on Simulated Annealing. Tests: 100 queens in less than 1 second and 60 iterations. 500 queens in 1 second and 224 iterations. 1000 queens in 5 seconds and 459 iterations. 10 000 queens in 20 minutes 30 seconds and 4885 iterations.
標簽: the representation incomplete methods
上傳時間: 2015-05-05
上傳用戶:1159797854
一個神經網絡工具箱,包括Support Vector Machine等。
上傳時間: 2015-05-09
上傳用戶:wmwai1314
The module LSQ is for unconstrained linear least-squares fitting. It is based upon Applied Statistics algorithm AS 274 (see comments at the start of the module). A planar-rotation algorithm is used to update the QR- factorization. This makes it suitable for updating regressions as more data become available. The module contains a test for singularities which is simpler and quicker than calculating the singular-value decomposition. An important feature of the algorithm is that it does not square the condition number. The matrix X X is not formed. Hence it is suitable for ill- conditioned problems, such as fitting polynomials. By taking advantage of the MODULE facility, it has been possible to remove many of the arguments to routines. Apart from the new function VARPRD, and a back-substitution routine BKSUB2 which it calls, the routines behave as in AS 274.
標簽: least-squares unconstrained Statisti Applied
上傳時間: 2015-05-14
上傳用戶:aig85
《精通MATLAB7.0混合編程》系統地介紹MATLAB 7.0的混合編程方法和技巧。全書共分為13章。第1章和第2章介紹MATLAB的基礎知識,第3章簡要介紹MATLAB混合編程,第4章至第9章分別介紹幾種典型的混合編程方法,包括C-MEX、MATLAB引擎、MAT數據文件共享、Mideva、Matrix和Add-in。第10章、第11章介紹MATLAB與Delphi和Excel的混合編程。第12章介紹MATLAB COM Builder,第13章以圖像處理為例介紹了一個綜合應用實例。 本書按混合編程的具體方法進行邏輯編排,自始至終用實例描述,每章著重闡述各種混合編程方法的實質和要點,同時穿插了作者多年使用MATLAB的經驗和體會。本書既適合初學者自學,也適用于高級MATLAB用戶,可作為高等數學、計算機、電子工程、數值分析、信息工程等課程的教學參考書,也可供上述領域的科研工作者參考。 這里是本書所有源碼壓縮包,內容詳盡、實例豐富,包含MATLAB實例的源文件、函數/命令和注解以及程序實例。
上傳時間: 2013-12-19
上傳用戶:1051290259
實驗描述:分布式數據庫的算法partition的具體實現。即通過該算法找到關系數據庫最優分裂點,使得結果最優。 算法思想: 1、 首先根據所輸入的attribute usage matrix得到AQ( ) 2、 對CA矩陣中劃分點預先設在n-1處,并將屬性列分成兩個集合,TA和BA,TA中的元為:{ A1 、A2 …… An-1 },BA中的元素為:{ An} 3、 確定集合TQ、BQ和OQ,其中TQ={ qj| AQ(qi) TA},BQ= TQ={ qj| AQ(qi) BA}, OQ=Q-{TQ BQ}。 4、 計算出CTQ、CBQ、COQ這些值,其中CTQ= ,CBQ= ,COQ= 5、 通過劃分點的第次移動分別計算出z=CTQ*CBQ-COQ2 6、 對取到的z的最大值處標記,為分割點 7、 對CA進行調整,重復計算得到最終z的最大值點,對CA矩陣進行劃分 8、 對上述算法進行修改,將得到的最大z值的分割點和次大的分割點都記錄下來,得到兩個分割,則將原有的屬性集劃分成三部分。 該算法的目的是找到獨立存取的屬性集合或者分別的應用集。比如說,如果可以找到兩個屬性A1,A2,他們只是被q1讀取,而A3,A4被q2,q3讀取,這樣在分裂的時候可以確定。算法就是找到這些組。另外為了簡單化起見,我命令refj(qi)全部等于1.
上傳時間: 2015-06-04
上傳用戶:13160677563
實驗描述:分布式數據庫的算法partition的具體實現。即通過該算法找到關系數據庫最優分裂點(2個),使得結果最優。 1、 首先根據所輸入的attribute usage matrix得到AQ( ) 2、 對CA矩陣中劃分點預先設在n-1處,并將屬性列分成3個集合,TA和BA和MA, 3、 確定集合TQ、BQ,MQ和OQ,其中TQ={ qj| AQ(qi) TA},BQ= TQ={ qj| AQ(qi) BA}, MQ={ qj| AQ(qi) MA},OQ=Q-{TQ BQ}。 4、 計算出CTQ、CBQ、CMQ、COQ這些值,其中CTQ= ,CBQ= ,CMQ= ,COQ= 5、 通過劃分點的第次移動分別計算出z=CTQ*CBQ*CMQ-COQ3 6、 對取到的z的最大值處標記,為分割點 7、 對CA進行調整,重復計算得到最終z的最大值點,對CA矩陣進行劃分 對上述算法進行修改,將得到的最大z值的分割點和次大的分割點都記錄下來,得到兩個分割,則將原有的屬性集劃分成三部分。
上傳時間: 2015-06-04
上傳用戶:515414293
The program performs alpha seeding within LIBSVM Solvers. Please refer to: D. DeCoste and K. Wagstaff, "Alpha Seeding for Support Vector Machines for the meaning of alpha seeding".
上傳時間: 2013-12-14
上傳用戶:曹云鵬
用模擬退火算法求解旅行商問題,其中用STL中的Vector來實現路徑的存放
上傳時間: 2013-12-31
上傳用戶:yiwen213