亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

Metropolis

  • 模擬退火算法的基本思想是從一給定解開始,從鄰域中隨機產生另一個解,接受Metropolis準則允許目標函數在有限范圍內變壞,它由一控制參數t決定,其作用類似于物理過程中的溫度T,對于控制參數的每一取值

    模擬退火算法的基本思想是從一給定解開始,從鄰域中隨機產生另一個解,接受Metropolis準則允許目標函數在有限范圍內變壞,它由一控制參數t決定,其作用類似于物理過程中的溫度T,對于控制參數的每一取值,算法持續進行“產生—判斷—接受或舍去”的迭代過程,對應著固體在某一恒定溫度下的趨于熱平衡的過程,當控制參數逐漸減小并趨于0時,系統越來越趨于平衡態,最后系統狀態對應于優化問題的全局最優解,該過程也稱為冷卻過程,由于固體退火必須緩慢降溫,才能使固體在每一溫度下都達到熱平衡,最終趨于平衡狀態,因此控制參數t經緩慢衰減,才能確保模擬退火算法最終優化問題的整體最優解。

    標簽: Metropolis 控制 參數 模擬退火算法

    上傳時間: 2013-12-25

    上傳用戶:cmc_68289287

  • 模擬退火算法來源于固體退火原理

    模擬退火算法來源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最后在常溫時達到基態,內能減為最小。根據Metropolis準則,粒子在溫度T時趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時的內能,ΔE為其改變量,k為Boltzmann常數。用固體退火模擬組合優化問題,將內能E模擬為目標函數值f,溫度T演化成控制參數t,即得到解組合優化問題的模擬退火算法:由初始解i和控制參數初值t開始,對當前解重復“產生新解→計算目標函數差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時的當前解即為所得近似最優解,這是基于蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火過程由冷卻進度表(Cooling Schedule)控制,包括控制參數的初值t及其衰減因子Δt、每個t值時的迭代次數L和停止條件S。

    標簽: 模擬退火算法

    上傳時間: 2015-04-24

    上傳用戶:R50974

  • 模擬退火算法來源于固體退火原理

    模擬退火算法來源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最后在常溫時達到基態,內能減為最小。根據Metropolis準則,粒子在溫度T時趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時的內能,ΔE為其改變量,k為Boltzmann常數。用固體退火模擬組合優化問題,將內能E模擬為目標函數值f,溫度T演化成控制參數t,即得到解組合優化問題的模擬退火算法:由初始解i和控制參數初值t開始,對當前解重復“產生新解→計算目標函數差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時的當前解即為所得近似最優解,這是基于蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火過程由冷卻進度表(Cooling Schedule)控制,包括控制參數的初值t及其衰減因子Δt、每個t值時的迭代次數L和停止條件S。

    標簽: 模擬退火算法

    上傳時間: 2015-04-24

    上傳用戶:ryb

  • 模擬退火算法來源于固體退火原理

    模擬退火算法來源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最后在常溫時達到基態,內能減為最小。根據Metropolis準則,粒子在溫度T時趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時的內能,ΔE為其改變量,k為Boltzmann常數。用固體退火模擬組合優化問題,將內能E模擬為目標函數值f,溫度T演化成控制參數t,即得到解組合優化問題的模擬退火算法:由初始解i和控制參數初值t開始,對當前解重復“產生新解→計算目標函數差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時的當前解即為所得近似最優解,這是基于蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火過程由冷卻進度表(Cooling Schedule)控制,包括控制參數的初值t及其衰減因子Δt、每個t值時的迭代次數L和停止條件S。

    標簽: 模擬退火算法

    上傳時間: 2014-12-19

    上傳用戶:TRIFCT

  • The package includes 3 Matlab-interfaces to the c-code: 1. inference.m An interface to the full

    The package includes 3 Matlab-interfaces to the c-code: 1. inference.m An interface to the full inference package, includes several methods for approximate inference: Loopy Belief Propagation, Generalized Belief Propagation, Mean-Field approximation, and 4 monte-carlo sampling methods (Metropolis, Gibbs, Wolff, Swendsen-Wang). Use "help inference" from Matlab to see all options for usage. 2. gbp_preprocess.m and gbp.m These 2 interfaces split Generalized Belief Propagation into the pre-process stage (gbp_preprocess.m) and the inference stage (gbp.m), so the user may use only one of them, or changing some parameters in between. Use "help gbp_preprocess" and "help gbp" from Matlab. 3. simulatedAnnealing.m An interface to the simulated-annealing c-code. This code uses Metropolis sampling method, the same one used for inference. Use "help simulatedAnnealing" from Matlab.

    標簽: Matlab-interfaces inference interface the

    上傳時間: 2016-08-27

    上傳用戶:gxrui1991

主站蜘蛛池模板: 金湖县| 赤壁市| 夏津县| 尼木县| 图片| 伊春市| 襄城县| 萨嘎县| 阿瓦提县| 南和县| 凤翔县| 鲁甸县| 微山县| 兰考县| 太湖县| 乌兰察布市| 通海县| 含山县| 吴川市| 沧州市| 文成县| 正宁县| 万年县| 德阳市| 天等县| 星子县| 理塘县| 略阳县| 喀什市| 天峨县| 绵阳市| 东乌| 临漳县| 四子王旗| 永和县| 德格县| 万山特区| 潢川县| 曲周县| 武功县| 巍山|