Micro-Electro-Mechanical Systems (MEMS) are miniature systems composed
ofintegratedelectricalandmechanicalpartstosenseand/orcontrolthingsonaμmscale.
The concept of MEMS is attributed to Richard Feynman’s famous talk on December
29th, 1959 [2,3]. Dr. Feynman foresaw many aspects of future MEMS development
with his insight in Microphysics. In particular, material properties in the μm scale are
differentfrombulkpropertiesandthescalingdownofintegratedcircuits(IC)fabrication
technology has been a major driving force of MEMS development.
Recent advancements in nanotechnology (NT) materials and growth of Micro/
nanotechnology have opened the door for potential applications of Microelectro-
mechanical systems (MEMS)- and NT-based sensors and devices. Such sensors and
devices are best suited for communications, medical diagnosis, commercial, military,
aerospace, and satellite applications. This book comes at a time when the future and
well-being of Western industrial nations in the twenty-first century’s global eco-
nomy increasingly depend on the quality and depth of the technological innovations
they can commercialize at a rapid pace.
The solid high-polymer-film-type fuel cell (PEM-FC) system is used as the power
supply equipment for transportation and replaces an internal combustion engine. A
reduction of the environmental load is expected through the cogeneration system’s
(CGS) use of the PEM-FC system as a distributed power supply to individual
houses, apartments, and so forth [1–3]. The growing use of distributed power
systems, such as fuel cells, the reduction of power-transmission losses, and an
increase of waste heat recovery are expected. Therefore, the reduction of carbon-
dioxide emission is also expected as compared to conventional energy supply
methods using commercial electric power.
這是我在做大學教授期間推薦給我學生的一本書,非常好,適合入門學習。《python深度學習》由Keras之父、現任Google人工智能研究員的弗朗索瓦?肖萊(Franc?ois Chollet)執筆,詳盡介紹了用Python和Keras進行深度學習的探索實踐,包括計算機視覺、自然語言處理、產生式模型等應用。書中包含30多個代碼示例,步驟講解詳細透徹。作者在github公布了代碼,代碼幾乎囊括了本書所有知識點。在學習完本書后,讀者將具備搭建自己的深度學習環境、建立圖像識別模型、生成圖像和文字等能力。但是有一個小小的遺憾:代碼的解釋和注釋是全英文的,即使英文水平較好的朋友看起來也很吃力。本人認為,這本書和代碼是初學者入門深度學習及Keras最好的工具。作者在github公布了代碼,本人參照書本,對全部代碼做了中文解釋和注釋,并下載了代碼所需要的一些數據集(尤其是“貓狗大戰”數據集),并對其中一些圖像進行了本地化,代碼全部測試通過。(請按照文件順序運行,代碼前后有部分關聯)。以下代碼包含了全書約80%左右的知識點,代碼目錄:2.1: A first look at a neural network( 初識神經網絡)3.5: Classifying movie reviews(電影評論分類:二分類問題)3.6: Classifying newswires(新聞分類:多分類問題 )3.7: Predicting house prices(預測房價:回歸問題)4.4: Underfitting and overfitting( 過擬合與欠擬合)5.1: Introduction to convnets(卷積神經網絡簡介)5.2: Using convnets with small datasets(在小型數據集上從頭開始訓練一個卷積網絡)5.3: Using a pre-trained convnet(使用預訓練的卷積神經網絡)5.4: Visualizing what convnets learn(卷積神經網絡的可視化)