To meet the future demand for huge traffic volume of wireless data service, the research on the fifth generation
(5G) mobile communication systems has been undertaken in recent years. It is expected that the spectral and energy
efficiencies in 5G mobile communication systems should be ten-fold higher than the ones in the fourth generation
(4G) mobile communication systems. Therefore, it is important to further exploit the potential of spatial multiplexing
of multiple antennas. In the last twenty years, multiple-input multiple-output (MIMO) antenna techniques have been
considered as the key techniques to increase the capacity of wireless communication systems. When a large-scale
antenna array (which is also called massive MIMO) is equipped in a base-station, or a large number of distributed
antennas (which is also called large-scale distributed MIMO) are deployed, the spectral and energy efficiencies can
be further improved by using spatial domain multiple access. This paper provides an overview of massive MIMO
and large-scale distributed MIMO systems, including spectral efficiency analysis, channel state information (CSI)
acquisition, wireless transmission technology, and resource allocation.
In order to improve the spectral efficiency in wireless communications, multiple
antennas are employed at both transmitter and receiver sides, where the resulting
system is referred to as the multiple-input multiple-output (MIMO) system. In
MIMO systems, it is usually requiredto detect signals jointly as multiple signals are
transmitted through multiple signal paths between the transmitter and the receiver.
This joint detection becomes the MIMO detection.
Use of multiple antennas at both ends of wireless links is the result of the
natural progression of more than four decades of evolution of adaptive
antenna technology. Recent advances have demonstrated that multiple-
input-multiple-output (MIMO) wireless systems can achieve impressive
increases in overall system performance.
The family of recent wireless standards included the optional employment of Multiple-Input
Multiple-Output(MIMO)techniques.This was motivatedby the observationaccordingto the
classic Shannon–Hartley law that the achievable channel capacity increases logarithmically
with the transmit power. In contrast, the MIMO capacity increases linearly with the number
of transmit antennas, provided that the number of receive antennas is equal to the number
of transmit antennas. With the further proviso that the total transmit power is increased in
proportion to the number of transmit antennas, a linear capacity increase is achieved upon
increasing the transmit power, which justifies the spectacular success of MIMO systems.
The purpose of this book is to introduce the concept of the Multiple Input Multiple Output
(MIMO) radio channel, which is an intelligent communication method based upon using
multiple antennas. The book opens by explaining MIMO in layman’s terms to help stu-
dents and people in industry working in related areas become easily familiarised with the
concept. Therefore the structure of the book will be carefully arranged to allow a user to
progress steadily through the chapters and understand the fundamental and mathematical
principles behind MIMO through the visual and explanatory way in which they will be
written. It is the intention that several references will also be provided, leading to further
reading in this highly researched technology.
The multiple-input multiple-output (MIMO) technique provides higher bit rates
and better reliability in wireless systems. The efficient design of RF transceivers
has a vital impact on the implementation of this technique. This first book is com-
pletely devoted to RF transceiver design for MIMO communications. The book
covers the most recent research in practical design and applications and can be
an important resource for graduate students, wireless designers, and practical
engineers.
Driven by the desire to boost the quality of service of wireless systems closer to that afforded
by wireline systems, space-time processing for multiple-input multiple-output (MIMO)
wireless communications research has drawn remarkable interest in recent years. Excit-
ing theoretical advances, complemented by rapid transition of research results to industry
products and services, have created a vibrant and growing area that is already established
by all counts. This offers a good opportunity to reflect on key developments in the area
during the past decade and also outline emerging trends.
Linear Technology’s high performance battery management ICsenable long battery life and run time, while providing precision charging control, constantstatus monitoring and stringent battery protection. Our proprietary design techniques seamlesslymanage multiple input sources while providing small solution footprints, faster charging and100% standalone operation. Battery and circuit protection features enable improved thermalperformance and high reliability operation.