多旅行商問題(Multiple Traveling Salesperson Problem ,簡稱MTSP) 討論的是如何安排m( > 1 ) 位旅行商訪問n( >
m ) 座城市,要求每個城市只允許被訪問一次時,求解所有旅行商花費的費用和是最小(或最大) 的問題。MTSP 問題其實與單
旅行商問題(Traveling Salesperson Problem ,簡稱TSP) 相似,但是由于添加了任何城市只要被某一旅行商訪問到即可這個附加條
件,因而增加了問題復雜度。在以前使用遺傳算法(GA) 研究解決MTSP 問題時,通常采用標準的TSP 染色體和處理方法。現
為解決MTSP 問題給出了一種新的染色體設計和相關的處理方法,并與以往的理論設計和計算性能進行比較。計算測試顯
示,新的方法能夠獲得較小的查找空間,在許多方面,新的方法產生的解空間更好。
標簽:
Salesperson
Traveling
Multiple
Problem
上傳時間:
2013-12-17
上傳用戶:蟲蟲蟲蟲蟲蟲
When a system designer specifies a nonisolated dc/dc powermodule, considering the needed input voltage range isequally as important as considering the required performanceattributes and features. Generally, nonisolated moduleshave either a narrow or a wide input voltage range. Narrowinputmodules typically have a nominal input voltage of3.3, 5, or 12 V. For systems that operate from a tightlyregulated input bus—such as those that do not use batterybackup—a narrow-input module is often adequate sincethe input remains fairly stable.Offering greater flexibility, wide-input modules operatewithin a range of 7 to 36 V, which includes the popular12- or 24-V industrial bus. This enables a single module tobe used for generating multiple voltages. These modulesare ideal for industrial controls, HVAC systems, vehicles,medical instrumentation, and other applications that usea loosely regulated distribution bus. In addition, systemspowered by a rectifier/battery charger with lead-acidbattery backup almost always require wide-input modules.System designers who choose power supplies may wantto take a close look at the latest generation of wide-inputdc/dc modules.
標簽:
Wide-input
modules
offer
dc
上傳時間:
2014-12-24
上傳用戶:dragonhaixm
All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provide proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.For input signals, which do not provide the required rise/fall times, external circuitry mustbe used to shape the signal transitions.In the attached diagram, the effect of the sample rate is shown. The numbers 1 to 5 in thediagram represent possible sample points. Waveform a) shows the result if the inputsignal transition time through the undefined TTL-level area is less than the time distancebetween the sample points (sampling at 1, 2, 3, and 4). Waveform b) can be the result ifthe sampling is performed more than once within the undefined area (sampling at 1, 2, 5,3, and 4).Sample points:1. Evaluation of the signal clearly results in a low level2. Either a low or a high level can be sampled here. If low is sampled, no transition willbe detected. If the sample results in a high level, a transition is detected, and anappropriate action (e.g. capture) might take place.3. Evaluation here clearly results in a high level. If the previous sample 2) had alreadydetected a high, there is no change. If the previous sample 2) showed a low, atransition from low to high is detected now.
標簽:
Signal
Input
Fall
Rise
上傳時間:
2013-10-23
上傳用戶:copu