The continuing vitality of spread-spectrum communication systems and the devel-
opment of new mathematical methods for their analysis provided the motivation to
undertake this new edition of the book. This edition is intended to enable readers
to understand the current state-of-the-art in this field. Almost twenty percent of the
materialinthiseditionisnew, includingseveralnewsections, anewchapteronadap-
tive arrays and filters, and a new chapter on code-division multiple-access networks.
The first question most readers of an O’Reilly book might ask is about the choice of the
cover animal. In this case, “why a duck?” Well, for the record, our first choice was a
unicorn decked out in glitter and a rainbow sash.
That response always gets a laugh (we are sure you just giggled a little), but it also brings
to the surface a common perception of software-defined networks among many expe‐
rienced network professionals. Although we think there is some truth to this perception,
there is certainly more meat than myth to this unicorn.
The continuing vitality of spread-spectrum communication systems and the devel-
opment of new mathematical methods for their analysis provided the motivation to
undertake this new edition of the book. This edition is intended to enable readers
to understand the current state-of-the-art in this field. Almost twenty percent of the
materialinthiseditionisnew, includingseveralnewsections, anewchapteronadap-
tive arrays and filters, and a new chapter on code-division multiple-access networks.
The remainder of the material has been thoroughly revised, and I have removed a
considerable amount of material that has been superseded by more definitive results.
Part I provides a compact survey on classical stochastic geometry models. The basic models defined
in this part will be used and extended throughout the whole monograph, and in particular to SINR based
models. Note however that these classical stochastic models can be used in a variety of contexts which
go far beyond the modeling of wireless networks. Chapter 1 reviews the definition and basic properties of
Poisson point processes in Euclidean space. We review key operations on Poisson point processes (thinning,
superposition, displacement) as well as key formulas like Campbell’s formula. Chapter 2 is focused on
properties of the spatial shot-noise process: its continuity properties, its Laplace transform, its moments
etc. Both additive and max shot-noise processes are studied. Chapter 3 bears on coverage processes,
and in particular on the Boolean model. Its basic coverage characteristics are reviewed. We also give a
brief account of its percolation properties. Chapter 4 studies random tessellations; the main focus is on
Poisson–Voronoi tessellations and cells. We also discuss various random objects associated with bivariate
point processes such as the set of points of the first point process that fall in a Voronoi cell w.r.t. the second
point process.
Notwithstanding its infancy, wireless mesh networking (WMN) is a hot and
growing field. Wireless mesh networks began in the military, but have since
become of great interest for commercial use in the last decade, both in local
area networks and metropolitan area networks. The attractiveness of mesh
networks comes from their ability to interconnect either mobile or fixed
devices with radio interfaces, to share information dynamically, or simply to
extend range through multi-hopping.
Wireless networking is undergoing a transformation from what has
been primarily a medium for supporting voice traffic between telephones,
into what is increasingly becoming a medium for supporting traffic among
a variety of digital devices transmitting media of many types (voice,
data, images, video. etc.) Wireline networking underwent a similar
transformation in the 1990s, which led to an enormous build-up in the
capacity of such networks, primarily through the addition of new optical
fiber, switches and other infrastructure.
Resource allocation is an important issue in wireless communication networks. In
recent decades, cognitive radio technology and cognitive radio-based networks have
obtained more and more attention and have been well studied to improve spectrum
utilization and to overcomethe problem of spectrum scarcity in future wireless com-
munication systems. Many new challenges on resource allocation appear in cogni-
tive radio-based networks. In this book, we focus on effective solutions to resource
allocation in several important cognitive radio-based networks, including a cogni-
tive radio-basedopportunisticspectrum access network, a cognitiveradio-basedcen-
tralized network, a cognitive radio-based cellular network, a cognitive radio-based
high-speed vehicle network, and a cognitive radio-based smart grid.
This book is the result of works dedicated to specific applications of
metaheuristics in smart electrical grids. From electric transmission,
distribution networks to electric microgrids, the notion of intelligence refers
to the ability to propose acceptable solutions in an increasingly more
restrictive environment. Most often, it refers to decision-making assisting
tools designed to support all human action.
Recent work has shown that convolutional networks can
be substantially deeper, more accurate, and efficient to train
if they contain shorter connections between layers close to
the input and those close to the output. In this paper, we
embrace this observation and introduce the Dense Convo-
lutional Network (DenseNet), which connects each layer
to every other layer in a feed-forward fashion.
《The Art of Electronics》國(guó)外經(jīng)典電子學(xué)教程第三版。豆瓣簡(jiǎn)介:《電子學(xué)(第2版)》是哈佛大學(xué)的經(jīng)典教材,自出版以來(lái)已被譯成多種語(yǔ)言版本。《電子學(xué)(第2版)》通過(guò)強(qiáng)調(diào)電子電路系統(tǒng)設(shè)計(jì)者所需的實(shí)用方法,即對(duì)電路的基本原理、經(jīng)驗(yàn)準(zhǔn)則以及大量實(shí)用電路設(shè)計(jì)技巧的全面總結(jié),側(cè)重探討了電子學(xué)及其電路的設(shè)計(jì)原理與應(yīng)用。它不僅涵蓋了電子學(xué)通常研究的全部知識(shí)點(diǎn),還補(bǔ)充了有關(guān)數(shù)字電子學(xué)中的大量較新應(yīng)用及設(shè)計(jì)方面的要點(diǎn)內(nèi)容。對(duì)高頻放大器、射頻通信調(diào)制電路設(shè)計(jì)、低功耗設(shè)計(jì)、帶寬壓縮以及信號(hào)的測(cè)量與處理等重要電路設(shè)計(jì)以及電子電路制作工藝設(shè)計(jì)方面的難點(diǎn)也做了通俗易懂的闡述。《電子學(xué)(第2版)》包含豐富的電子電路分析設(shè)計(jì)實(shí)例和大量圖表資料,內(nèi)容全面且闡述透徹,是一本世界范圍內(nèi)公認(rèn)的電子學(xué)電路分析、設(shè)計(jì)及其應(yīng)用的優(yōu)秀教材。《電子學(xué)(第2版)》可作為電氣、電子、通信、計(jì)算機(jī)與自動(dòng)化類(lèi)等專(zhuān)業(yè)本科生的專(zhuān)業(yè)基課程教材或參考書(shū)。對(duì)于從事電子工程、通信及微電子等方面電路設(shè)計(jì)的工程技術(shù)人員,也是一本具有較高參考價(jià)值的好書(shū)。