This directory builds the miniport driver for Adaptec’s 1540 family of SCSI controllers. This driver exports several functions which are used by SCSIPORT.SYS to issue SCSI requests to the devices attached to the controller, process adapter interrupts, and various other SCSI activities.
This driver is also responsible for detecting non-Plug and Play 1540 SCSI controllers—the Plug and Play controllers are detected by the operating system—and for shutting down the controller during device removal or power management operations.
This sample also demonstrates the use of the SCSIWMI library to add WMI functionality to SCSI miniports. This library can be linked into a miniport and provides most of the framework needed to expose WMI data blocks to SCSIPORT and the system.
This is the source code for encryption using the latest AES algorithm.
AES algorithm is also called Rijndael algorithm. AES algorithm is
recommended for non-classified use by the National Institute of Standards
and Technology(NIST), USA. Now-a-days AES is being used for almost
all encryption applications all around the world.
this directory
contains the following:
* The acdc algorithm for finding the
approximate general (non-orthogonal)
joint diagonalizer (in the direct Least Squares sense) of a set of Hermitian matrices.
[acdc.m]
* The acdc algorithm for finding the
same for a set of Symmetric matrices.
[acdc_sym.m](note that for real-valued matrices the Hermitian and Symmetric cases are similar however, in such cases the Hermitian version
[acdc.m], rather than the Symmetric version[acdc_sym] is preferable.
* A function that finds an initial guess
for acdc by applying hard-whitening
followed by Cardoso s orthogonal joint
diagonalizer. Note that acdc may also
be called without an initial guess,
in which case the initial guess is set by default to the identity matrix.
The m-file includes the joint_diag
function (by Cardoso) for performing
the orthogonal part.
[init4acdc.m]
外國人開發(fā)的電磁時域有限差分方法工具包
Electromagnetic Finite-Difference Time-Domain (EmFDTD)
is a basic two-dimensional FDTD code developed at the
School of Electrical Engineering, Sharif University of
Technology.
This code has been written based on the standard
Yee s FDTD algorithm. Applications include propagation,
scattering, and diffraction of electromagnetic waves
in homogeneous and non-homogeneous isotropic media
for in-plane propagating waves. Negative permittivites
or permeabilities as well as dispersion is not included.
Zero, Periodic, and Perfectly Matched Layer boundary
conditions may be selectively applied to the solution
domain.
The program is best suited for study of propagation and
diffraction of electromagnetic waves in Photonic Crystal
structures.
EmFDTD is written in MATLAB language and has been
tested under MATLAB 5.0 and higher versions.
Boost provides free peer-reviewed portable C++ source libraries.
We emphasize libraries that work well with the C++ Standard Library. Boost libraries are intended to be widely useful, and usable across a broad spectrum of applications. The Boost license encourages both commercial and non-commercial use.
We aim to establish "existing practice" and provide reference implementations so that Boost libraries are suitable for eventual standardization. Ten Boost libraries are already included in the C++ Standards Committee s Library Technical Report (TR1) as a step toward becoming part of a future C++ Standard. More Boost libraries are proposed for the upcoming TR2.
Boost works on almost any modern operating system, including UNIX and Windows variants. Follow the Getting Started Guide to download and install Boost. Popular Linux and Unix distributions such as Fedora, Debian, and NetBSD include pre-built Boost packages. Boost may also already be available on your organization s internal web server.
H.264/AVC, the result of the collaboration between the ISO/IEC
Moving Picture Experts Group and the ITU-T Video Coding
Experts Group, is the latest standard for video coding. The goals
of this standardization effort were enhanced compression efficiency,
network friendly video representation for interactive
(video telephony) and non-interactive applications (broadcast,
streaming, storage, video on demand). H.264/AVC provides
gains in compression efficiency of up to 50% over a wide range
of bit rates and video resolutions compared to previous standards.
Compared to previous standards, the decoder complexity
is about four times that of MPEG-2 and two times that of
MPEG-4 Visual Simple Profile. This paper provides an overview
of the new tools, features and complexity of H.264/AVC.
SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations on high performance machines. The library is written in C and is callable from either C or Fortran. The library routines will perform an LU decomposition with partial pivoting and triangular system solves through forward and back substitution. The LU factorization routines can handle non-square matrices but the triangular solves are performed only for square matrices. The matrix columns may be preordered (before factorization) either through library or user supplied routines. This preordering for sparsity is completely separate from the factorization. Working precision iterative refinement subroutines are provided for improved backward stability. Routines are also provided to equilibrate the system, estimate the condition number, calculate the relative backward error, and estimate error bounds for the refined solutions.
In an electromagnetic cloak based on a transformation approach, reduced sets of
material properties are generally favored due to their easier implementation in reality,
although a seemingly inevitable drawback of undesired reflection exists in such cloaks.
Here we suggest using high-order transformations to create smooth moduli at the outer
boundary of the cloak, therefore completely eliminating the detrimental scattering
within the limit of geometric optics. We apply this scheme to a non-magnetic
cylindrical cloak and demonstrate that the scattered field is reduced substantially in a
cloak with optimal quadratic transformation as compared to its linear counterpart.
Watermarking schemes evaluation
Abstract鈥擠igital watermarking has been presented as a solution to copy protection of multimedia objects and dozens of schemes and algorithms have been proposed. Two main problems seriously darken the future of this technology though.
Firstly, the large number of attacks and weaknesses which appear as fast as new algorithms are proposed, emphasizes the limits of this technology and in particu-lar the fact that it may not match users expectations.
Secondly, the requirements, tools and methodologies to assess the current technologies are almost non-existent. The lack of benchmarking of current algorithms is bla-tant. This confuses rights holders as well as software and hardware manufacturers and prevents them from using the solution appropriate to their needs. Indeed basing long-lived protection schemes on badly tested watermarking technology does not make sense.