neural network utility is a Neural Networks library for the C++ Programmer. It is entirely object oriented and focuses on reducing tedious and confusing problems of programming neural networks. By this I mean that network layers are easily defined. An entire multi-layer network can be created in a few lines, and trained with two functions. Layers can be connected to one another easily and painlessly.
標(biāo)簽: Programmer Networks entirely network
上傳時(shí)間: 2013-12-24
上傳用戶:liuchee
一本詳細(xì)介紹vc object model 的書籍,你書中的講解十分的詳細(xì)、全面
標(biāo)簽: object model 詳細(xì)介紹 書籍
上傳時(shí)間: 2016-12-19
上傳用戶:ynzfm
無需攝像機(jī)標(biāo)定的攝像機(jī)運(yùn)動(dòng)跟蹤算法 Moving Object Detection Video Surveillance and its Applicationinand Monitoring
標(biāo)簽: Applicationinand Surveillance Monitoring Detection
上傳時(shí)間: 2014-11-28
上傳用戶:tianjinfan
Video object matching across multiple independent views using local descriptors and adaptive learning文章描述了多攝像機(jī)系統(tǒng)下的目標(biāo)檢測與跟蹤,和自學(xué)習(xí)方法。很有參考價(jià)值。
標(biāo)簽: independent descriptors matching adaptive
上傳時(shí)間: 2014-01-18
上傳用戶:chongcongying
列出數(shù)據(jù)庫中所有的表名 獲取access庫中表的個(gè)數(shù)及表的名稱 用ado怎樣實(shí)現(xiàn) 工程--->引用--->Microsoft ActiveX Data Object 2.x(版本號(hào))
標(biāo)簽: Microsoft ActiveX access Object
上傳時(shí)間: 2016-12-30
上傳用戶:bakdesec
Object-Oriented Programming with ANSI-C
標(biāo)簽: Object-Oriented Programming ANSI-C with
上傳時(shí)間: 2017-01-04
上傳用戶:3到15
(1)ICCV1999 Object Recognition from Local Scale-Invariant Features.pdf提出(2)IJCV2004 Distinctive image features from scale invariant keypoints.pdf總結(jié)(3)CVPR2004 PCA-SIFT:A More Distinctive Representation for Local Image Descriptors.pdf加PCA降維
標(biāo)簽: Scale-Invariant Distinctive Recognition Features
上傳時(shí)間: 2013-12-27
上傳用戶:yepeng139
PASCAL Visual Object Classes,視覺識(shí)別競賽的程序,共有20大類視覺目標(biāo)。用MATLAB代碼寫成。能生成precision/recall圖。
標(biāo)簽: Classes PASCAL Object Visual
上傳時(shí)間: 2014-01-11
上傳用戶:壞天使kk
Object-Oriented Programming Implementation Issues of C++ Manipulating Data Object Persistence and Encryption
標(biāo)簽: Object-Oriented Implementation Manipulating Programming
上傳時(shí)間: 2017-01-14
上傳用戶:杜瑩12345
This paper studies the problem of tracking a ballistic object in the reentry phase by processing radar measurements. A suitable (highly nonlinear) model of target motion is developed and the theoretical Cramer—Rao lower bounds (CRLB) of estimation error are derived. The estimation performance (error mean and
標(biāo)簽: processing ballistic the tracking
上傳時(shí)間: 2014-10-31
上傳用戶:yyyyyyyyyy
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1