Abstract: This application note explains the hardware of different types of 1-Wire® interfaces and software examples adapted to this hardware with a focus on serial ports. Depending on the types of iButtons required for a project and the type of computer to be used, the most economical interface is easily found. The hardware examples shown are basically two different types: 5V general interface and 12V RS-232 interface. Within the 5V group a common printed circuit board could be used for all circuits described. The variations can be achieved by different populations of components. The same principal is used for the 12V RS-232 interface. The population determines if it is a Read all or a Read/Write all type of interface.
There are other possible circuit implementations to create a 1-Wire interface. The circuits described in this application note cover many different configurations. For a custom application, one of the described Options can be adapted to meet individual needs.
XAPP520將符合2.5V和3.3V I/O標(biāo)準(zhǔn)的7系列FPGA高性能I/O Bank進(jìn)行連接
The I/Os in Xilinx® 7 series FPGAs are classified as either high range (HR) or high performance (HP) banks. HR I/O banks can be operated from 1.2V to 3.3V, whereas HP I/O banks are optimized for operation between 1.2V and 1.8V. In circumstances that require an HP 1.8V I/O bank to interface with 2.5V or 3.3V logic, a range of Options can be deployed. This application note describes methodologies for interfacing 7 series HP I/O banks with 2.5V and 3.3V systems
The CodeWarrior Development Suite provides access and technical support to amultitude of CodeWarrior products. In this quick start guide, Section 1 explains howto register your CodeWarrior Development Suite. Section 2 explains how to activateand install one of your products. Section 3 describes what you are entitled to withthe purchase of your CodeWarrior Development Suite, and Section 4 discusses theavailable purchase Options. Section 5 describes the benefits of maintaining a currenttechnical support contract, and Section 6 tells you how to access support.
Abstract: The process of designing a radio system can be complex and often involves many project tradeoffs. Witha little insight, balancing these various characteristics can make the job of designing a radio system easier. Thistutorial explores these tradeoffs and provides details to consider for various radio applications. With a focus on theindustrial, scientific, medical (ISM) bands, the subjects of frequency selection, one-way versus two-way systems,modulation techniques, cost, antenna Options, power-supply influences, effects on range, and protocol selectionare explored.
Multioutput monolithic regulators are easy to use and fi tinto spaces where multichip solutions cannot. Nevertheless,the popularity of multioutput regulators is temperedby a lack of Options for input voltages above 30V andsupport of high output currents. The LT3692A fi lls thisgap with a dual monolithic regulator that operates frominputs up to 36V. It also includes a number of channeloptimization features that allow the LT3692A’s per-channelperformance to rival that of multichip solutions.
Most designers wish to utilize as much of a device as possible in order to enhance the overallproduct performance, or extend a feature set. As a design grows, inevitably it will exceed thearchitectural limitations of the device. Exactly why a design does not fit can sometimes bedifficult to determine. Programmable logic devices can be configured in almost an infinitenumber of ways. The same design may fit when you use certain implementation switches, andfail to fit when using other switches. This application note attempts to clarify the CPLD softwareimplementation (CPLDFit) Options, as well as discuss implementation tips in CoolRunnerTM-IIdesigns in order to maximize CPLD utilization.
This application note describes the implementation of a two-dimensional Rank Order filter. Thereference design includes the RTL VHDL implementation of an efficient sorting algorithm. Thedesign is parameterizable for input/output precision, color standards, filter kernel size,maximum horizontal resolution, and implementation Options. The rank to be selected can bemodified dynamically, and the actual horizontal resolution is picked up automatically from theinput synchronization signals. The design has a fully synchronous interface through the ce, clk,and rst ports.