亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

PARTICLE

  • 非常好的優(yōu)化算法的書

    非常好的優(yōu)化算法的書,詳細介紹了蟻群算法和粒子群算法以及相關的matlab工具箱,講了理論和應用給出了工具箱的下載地址。 Swarm intelligence is an innovative computational way to solve hard problems. In particular, PARTICLE swarm optimization, also commonly known as PSO, mimics the behavior of a swarm of insects or a school of fish. If one of the PARTICLE discovers a good path to food the rest of the swarm will be able to follow instantly even if they are far away in the swarm. Swarm behavior is modeled by PARTICLEs in multidimensional space that have two characteristics: a position and a velocity. These PARTICLEs wander around the hyperspace and remember the best position that they have discovered. They communicate good positions to each other and adjust their own position and velocity based on these good positions.

    標簽: 優(yōu)化算法

    上傳時間: 2014-01-26

    上傳用戶:zgu489

  • % PURPOSE : Demonstrate the differences between the following filters on the same problem: % % 1)

    % PURPOSE : Demonstrate the differences between the following filters on the same problem: % % 1) Extended Kalman Filter (EKF) % 2) Unscented Kalman Filter (UKF) % 3) PARTICLE Filter (PF) % 4) PF with EKF proposal (PFEKF) % 5) PF with UKF proposal (PFUKF)

    標簽: the Demonstrate differences following

    上傳時間: 2016-10-20

    上傳用戶:wuyuying

  • 無線傳感器網(wǎng)絡

    無線傳感器網(wǎng)絡,粒子濾波,PARTICLE filter for sensor network

    標簽: 無線傳感器網(wǎng)絡

    上傳時間: 2016-11-14

    上傳用戶:firstbyte

  • 將PSO和LBG結合在一步迭代過程中

    將PSO和LBG結合在一步迭代過程中,并使用PARTICLE-pair(PP)搜索問題空間的算法

    標簽: PSO LBG 迭代 過程

    上傳時間: 2014-01-22

    上傳用戶:zmy123

  • dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical

    dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical systems. It provides methods such as the Kalman, unscented Kalman, and PARTICLE filters and smoothers, as well as useful classes such as common probability distributions and stochastic processes.

    標簽: probabilistic distributed large-scale dynamical

    上傳時間: 2014-01-12

    上傳用戶:wangdean1101

  • 《Optimal State Estimation - Kalman, H Infinity, and Nonlinear Approaches》 一書的配套源碼

    《Optimal State Estimation - Kalman, H Infinity, and Nonlinear Approaches》 一書的配套源碼,包括了Kalman Filter、Hinf Filter、PARTICLE Filter等的Matlab源碼

    標簽: Estimation Approaches Nonlinear Infinity

    上傳時間: 2013-12-20

    上傳用戶:caozhizhi

  • PSO多目標尋優(yōu)

    evolution computing 現(xiàn)在最火的一篇論文 Handling Multiple Objectives With PARTICLE Swarm Optimization

    標簽: PSO 多目標

    上傳時間: 2016-07-01

    上傳用戶:白水煮瓜子

  • SailingSim-Matlab-master

    PARTICLE-swarm-optimization-PSO-for-MPPT-master

    標簽: SailingSim-Matlab-master

    上傳時間: 2017-03-11

    上傳用戶:zosoong

  • 基于模糊聚類分析與模型識別的微電網(wǎng)多目標優(yōu)化方法

    在微電網(wǎng)調度過程中綜合考慮經(jīng)濟、環(huán)境、蓄電池的 循環(huán)電量,建立多目標優(yōu)化數(shù)學模型。針對傳統(tǒng)多目標粒子 群算法(multi-objective PARTICLE swarm optimization,MOPSO) 的不足,提出引入模糊聚類分析的多目標粒子群算法 (multi-objective PARTICLE swarm optimization algorithm based on fuzzy clustering,F(xiàn)CMOPSO),在迭代過程中引入模糊聚 類分析來尋找每代的集群最優(yōu)解。與 MOPSO 相比, FCMOPSO 增強了算法的穩(wěn)定性與全局搜索能力,同時使優(yōu) 化結果中 Pareto 前沿分布更均勻。在求得 Pareto 最優(yōu)解集 后,再根據(jù)各目標的重要程度,用模糊模型識別從最優(yōu)解集 中找出不同情況下的最優(yōu)方案。最后以一歐洲典型微電網(wǎng)為 例,驗證算法的有效性和可行性。

    標簽: 模糊 模型識別 微電網(wǎng) 多目標優(yōu)化 聚類分析

    上傳時間: 2019-11-11

    上傳用戶:Dr.趙勁帥

主站蜘蛛池模板: 八宿县| 新干县| 红河县| 格尔木市| 稻城县| 汝南县| 广水市| 霍城县| 安国市| 怀柔区| 宁城县| 镇安县| 淮南市| 离岛区| 兴安盟| 保康县| 沁源县| 磐石市| 永清县| 昭平县| 石城县| 武穴市| 婺源县| 宝丰县| 维西| 彭山县| 江西省| 安西县| 东兰县| 锡林浩特市| 抚松县| 平乐县| 木里| 池州市| 卓资县| 镇江市| 南京市| 温州市| 乌拉特前旗| 大田县| 华亭县|