PCB設(shè)計(jì)制作與工藝,作電路板開發(fā)的一定要看看!不可錯(cuò)過哦
標(biāo)簽: PCB
上傳時(shí)間: 2013-04-24
上傳用戶:kbnswdifs
臺(tái)灣成功大學(xué)的關(guān)于無人機(jī)自動(dòng)駕駛控制的論文集(1) 這包共4篇,分別為: 無人飛機(jī)速度控制器設(shè)計(jì)與實(shí)現(xiàn) 無人飛行船自主性控制設(shè)計(jì)與實(shí)現(xiàn) 無人飛行載具導(dǎo)引飛控整合自動(dòng)駕駛儀參數(shù)選取之研究 無人飛行載具導(dǎo)引飛控之軟體與硬體模擬
標(biāo)簽: lunwen
上傳時(shí)間: 2013-08-03
上傳用戶:luominghua
電動(dòng)摩托車具有零排放、低噪聲等優(yōu)點(diǎn),是真正的綠色環(huán)保輕型交通工具,它以方便j快捷等特點(diǎn)被越來越多的人們所接受,成為大中城市公共交通的理想補(bǔ)充。而無刷直流電動(dòng)機(jī)以其控制簡單、可靠性高、輸出轉(zhuǎn)矩大等優(yōu)點(diǎn),被大量地用作電動(dòng)摩托車驅(qū)動(dòng)電機(jī)。本文主要研究基于AVR單片機(jī)的電動(dòng)摩托車控制技術(shù)。 首先,分析了電動(dòng)摩托車的發(fā)展趨勢,以及無刷直流電動(dòng)機(jī)能在電動(dòng)摩托車驅(qū)動(dòng)領(lǐng)域得到廣泛應(yīng)用的原因,并探討了電動(dòng)摩托車無刷直流驅(qū)動(dòng)電機(jī)的控制方法。 其次,在分析無刷直流電動(dòng)機(jī)工作原理的基礎(chǔ)上,構(gòu)造了無刷直流電動(dòng)機(jī)的數(shù)學(xué)模型,確立了通過PWM調(diào)節(jié)改變電樞電壓的大小來調(diào)節(jié)轉(zhuǎn)速的控制策略。 第三,采用ATMEL公司的ATmega88單片機(jī)為控制核心,設(shè)計(jì)了包括電流檢測與保護(hù)、位置信號(hào)檢測、功率開關(guān)管驅(qū)動(dòng)、電源轉(zhuǎn)換和電壓采樣與欠壓保護(hù)等一系列硬件電路,充分利用了ATmega88單片機(jī)成本低、功能豐富、運(yùn)算能力強(qiáng)等優(yōu)點(diǎn),簡化了控制電路,提高了控制系統(tǒng)的可靠性,降低了控制成本。 第四,采用C語言編寫了控制程序,完善了控制功能,實(shí)現(xiàn)了軟、硬件控制方法的結(jié)合。使用ICC-AVR集成開發(fā)環(huán)境和SL-ISP在線編程,降低了開發(fā)成本;采用模塊化設(shè)計(jì)方法設(shè)計(jì)控制程序,提高了程序的可維護(hù)性。完成的功能模塊主要包括啟動(dòng)與換相模塊、電動(dòng)機(jī)轉(zhuǎn)速調(diào)節(jié)模塊、過電流與堵轉(zhuǎn)保護(hù)模塊、欠電壓保護(hù)模塊和定速巡航模塊等。 最后,對(duì)開發(fā)的控制系統(tǒng)進(jìn)行了調(diào)試,并對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了分析。結(jié)果表明,控制系統(tǒng)運(yùn)行可靠、實(shí)時(shí)性好,證明ATmega88單片機(jī)適合用作電動(dòng)摩托車驅(qū)動(dòng)電機(jī)的控制芯片。
標(biāo)簽: 電動(dòng)摩托車 無刷直流 控制方法
上傳時(shí)間: 2013-05-20
上傳用戶:lanhuaying
電氣驅(qū)動(dòng)系統(tǒng)是電動(dòng)汽車的心臟,主要由驅(qū)動(dòng)電機(jī)、功率變換器和控制器等三個(gè)子系統(tǒng)構(gòu)成。本文以TI公司的TMS320LF2407A為系統(tǒng)控制核心,富士公司的IPM模塊為逆變器開關(guān)器件,運(yùn)用空間矢量技術(shù),設(shè)計(jì)了異步電機(jī)變頻調(diào)速控制系統(tǒng)。 論文在異步電機(jī)數(shù)學(xué)模型基礎(chǔ)之上,分析了轉(zhuǎn)速閉環(huán)轉(zhuǎn)差頻率控制系統(tǒng)以及矢量控制系統(tǒng)的控制策略和實(shí)現(xiàn)方法;為了給控制系統(tǒng)提供電源,論文設(shè)計(jì)了使用UC3843作為控制核心的反激型開關(guān)穩(wěn)壓電源,介紹了UC3843以及電源電路的工作原理及設(shè)計(jì);論文詳細(xì)設(shè)計(jì)了控制系統(tǒng)的主電路、控制電路以及保護(hù)和告警電路;針對(duì)電動(dòng)汽車電機(jī)控制器運(yùn)行環(huán)境復(fù)雜,處在大量的干擾中,論文從電路板PCB的設(shè)計(jì)以及控制器機(jī)箱內(nèi)部布局布線等方面充分考慮了其電磁兼容性;根據(jù)現(xiàn)場調(diào)試的經(jīng)驗(yàn),在實(shí)驗(yàn)室中使用磁粉制動(dòng)器模擬電機(jī)負(fù)載搭建了異步電機(jī)試驗(yàn)臺(tái),實(shí)驗(yàn)結(jié)果表明了控制系統(tǒng)具有良好的調(diào)速性能和較寬的調(diào)速范圍。
標(biāo)簽: 電動(dòng) 異步電機(jī) 控制系統(tǒng)
上傳時(shí)間: 2013-04-24
上傳用戶:edisonfather
這是一個(gè)教你如何設(shè)計(jì)PCB電路板的pdf文件,一些關(guān)于PCB布局使得注意點(diǎn)等!
標(biāo)簽: PCB 如何設(shè)計(jì) 印制電路板
上傳時(shí)間: 2013-05-17
上傳用戶:cknck
電子式互感器與傳統(tǒng)電磁式互感器相比,在帶寬、絕緣和成本等方面具有優(yōu)勢,因而代表了高電壓等級(jí)電力系統(tǒng)中電流和電壓測量的一種極具吸引力的發(fā)展方向。隨著信息技術(shù)的發(fā)展和電力市場中競爭機(jī)制的形成,電子式互感器成為人們研究的熱點(diǎn);越來越多的新技術(shù)被引入到電子式互感器設(shè)計(jì)中,以提高其工作可靠性,降低運(yùn)行總成本,減小對(duì)生態(tài)環(huán)境的壓力。本文圍繞電子式互感器實(shí)用化中的關(guān)鍵技術(shù)而展開理論與實(shí)驗(yàn)研究,具體包括新型傳感器、雙傳感器的數(shù)據(jù)融合算法、數(shù)字接口、組合式電源、低功耗技術(shù)和自監(jiān)測功能的實(shí)現(xiàn)等。 目前電子式電流互感器(ECT)大多數(shù)采用單傳感器開環(huán)結(jié)構(gòu),對(duì)每個(gè)環(huán)節(jié)的精度和可靠性的要求都很高,嚴(yán)重制約了ECT整體性能的提高,影響其實(shí)用化。本文介紹了新型傳感器~鐵心線圈式低功率電流傳感器(LPET)和印刷電路板(PCB)空心線圈及其數(shù)字積分器,在此基礎(chǔ)上設(shè)計(jì)了一種基于LPCT和PCB空心線圈的組合結(jié)構(gòu)的新型電流傳感器。該結(jié)構(gòu)具有并聯(lián)的特點(diǎn),結(jié)合了這兩種互感器的優(yōu)點(diǎn),采用數(shù)據(jù)融合算法來處理兩路信號(hào),實(shí)現(xiàn)高精度測量和提高系統(tǒng)可靠性,并探索出辨別LPET飽和的新方法。試驗(yàn)和仿真結(jié)果表明,這種新型電流傳感器可以覆蓋較大的電流測量范圍,達(dá)到IEC 60044-8標(biāo)準(zhǔn)中關(guān)于測量(幅值誤差)、保護(hù)(復(fù)合誤差)和暫態(tài)響應(yīng)(峰值)的準(zhǔn)確度要求,能夠作為多用途電流傳感器使用。 在電子式電壓互感器方面,基于精密電阻分壓器的新型傳感器在原理、結(jié)構(gòu)和輸出信號(hào)等方面與傳統(tǒng)的電壓互感器有很大不同,本文設(shè)計(jì)了一種可替代10kV電磁式電壓互感器的精密電阻分壓器。通過試驗(yàn)研究與計(jì)算分析,得出其性能主要受電阻特性和雜散電容的影響,并給出了減小其誤差的方法。測試結(jié)果表明,設(shè)計(jì)的10kV精密電阻分壓器的準(zhǔn)確度滿足IEC 60044-7標(biāo)準(zhǔn)要求,可達(dá)0.2級(jí)。 電子式互感器的關(guān)鍵技術(shù)之一是內(nèi)部的數(shù)字化以及其標(biāo)準(zhǔn)化接口,本文以10kV組合型電子式互感器為對(duì)象設(shè)計(jì)了一種實(shí)用化的數(shù)字系統(tǒng)。以精密電阻分壓器作為電壓傳感器,電流傳感器則采用基于數(shù)據(jù)融合算法的LPCT和PCB空心線圈的組合結(jié)構(gòu)。本文首先解決了互感器間的同步與傳感器間的內(nèi)部同步問題,進(jìn)而依照IEC61850-9-1標(biāo)準(zhǔn),實(shí)現(xiàn)了組合型電子式互感器的100M以太網(wǎng)接口。 電子式電流互感器在高電壓等級(jí)的應(yīng)用研究中,ECT高壓側(cè)的電源問題是關(guān)鍵技術(shù)之一。論文首先分析了兩種電源方案:取電CT電源和激光電源。取電CT電源通過一個(gè)特制的電流互感器(取電CT),直接從高壓側(cè)母線電流中獲取電能。在取電CT和整流橋之間設(shè)計(jì)一個(gè)串聯(lián)電感,大大降低了施加在整流橋上的的感應(yīng)電壓并限制了取電CT的輸出電流,起到了穩(wěn)定電壓和保護(hù)后續(xù)電路的作用。激光電源方案以先進(jìn)的光電轉(zhuǎn)換器、半導(dǎo)體激光二極管和光纖為基礎(chǔ),單獨(dú)一根上行光纖同時(shí)完成供能和控制信號(hào)的傳輸,在不影響光供能穩(wěn)定性的情況下,數(shù)據(jù)通信完成在短暫的供能間隔中。在高電位端控制信號(hào)通過在能量變換電路中增加一個(gè)比較器電路被提取出來。本文還提出了一種將兩種供能方式結(jié)合使用的組合電源,并設(shè)計(jì)了這兩種電源之間的切換方法,解決了取電CT電源的死區(qū)問題,延長了激光器的使用壽命。作為綜合應(yīng)用實(shí)例,設(shè)計(jì)并完成了以LPCT為傳感器、由組合電源供能、采用低功耗技術(shù)的高壓電子式電流互感器。互感器高壓側(cè)的一次轉(zhuǎn)換器能夠提供兩路傳感器數(shù)據(jù)通道,并且具有溫度補(bǔ)償和采集通道的自校正功能,在更寬溫度、更大電流范圍內(nèi)保證了極高的測量精度:互感器低電位端的二次轉(zhuǎn)換器具有數(shù)字和模擬接口,可以接收數(shù)據(jù)并發(fā)送命令來控制一次轉(zhuǎn)換器,包括同步和校正命令在內(nèi)的數(shù)據(jù)信號(hào)可以通過同一根供能光纖傳送到一次轉(zhuǎn)換器。該互感器具有在線監(jiān)測功能,這種預(yù)防性維護(hù)和自檢測功能夠提示維護(hù)或提出警告,提高了可靠性。系統(tǒng)測試表明:具有低功耗光纖發(fā)射驅(qū)動(dòng)電路的一次轉(zhuǎn)換器平均功耗在40mw以下:上行光纖中通信波特率可以達(dá)到200kb/s,下行光纖中更是高達(dá)2Mb/s;系統(tǒng)準(zhǔn)確度同時(shí)滿足IEC6044-8標(biāo)準(zhǔn)對(duì)0.2S級(jí)測量和5TPE級(jí)保護(hù)電子式互感器的要求。
標(biāo)簽: 電子式互感器 關(guān)鍵技術(shù)
上傳時(shí)間: 2013-06-09
上傳用戶:handless
本文介紹了埋弧焊的特點(diǎn)、發(fā)展過程、國內(nèi)外的研究現(xiàn)狀;分析了軟開關(guān)逆變式主回路的優(yōu)點(diǎn)、模擬電路控制系統(tǒng)和數(shù)字化控制系統(tǒng)的優(yōu)缺點(diǎn),指出數(shù)字化控制是逆變埋弧焊機(jī)控制的發(fā)展方向;對(duì)埋弧焊接工作原理和埋弧焊機(jī)控制系統(tǒng)進(jìn)行分析,介紹了交流方波埋弧焊的優(yōu)點(diǎn);論述了變動(dòng)送絲電弧控制系統(tǒng)的原理及影響因素,并且分析了變動(dòng)送絲情況下焊接電弧的穩(wěn)定性,為逆變式交流方波埋弧焊系統(tǒng)的設(shè)計(jì)提供了理論依據(jù)。 在分析傳統(tǒng)交流方波埋弧焊主回路的基礎(chǔ)上設(shè)計(jì)了主回路結(jié)構(gòu),對(duì)主回路中一次、二次逆變回路的軟開關(guān)工作方式進(jìn)行分析并做了簡單仿真。IGBT是逆變電源的核心部件,文中論述了IGBT功率器件的選型和各種保護(hù)措施以保證系統(tǒng)的可靠工作。焊機(jī)工作發(fā)熱量很大,本文介紹了整機(jī)和關(guān)鍵器件的熱設(shè)計(jì)。 數(shù)字化控制方式是逆變埋弧焊機(jī)控制的發(fā)展方向,本文采用“MCU+DSP”的控制結(jié)構(gòu),對(duì)埋弧焊的整個(gè)焊接過程進(jìn)行精確控制。文中詳細(xì)介紹了主控制板的設(shè)計(jì)思路和電源、電流與電壓反饋、控制芯片最小系統(tǒng)、通信與保護(hù)工作電路。焊機(jī)的工作中,各種干擾不可避免,對(duì)各種可能干擾分析的基礎(chǔ)上在硬件電路設(shè)計(jì)和PCB板的制作中采取了相應(yīng)的抗干擾措施。軟件設(shè)計(jì)是焊接穩(wěn)定進(jìn)行的關(guān)鍵因素,文中介紹了控制系統(tǒng)中關(guān)鍵步驟的軟件設(shè)計(jì)思路和流程并在軟件的實(shí)現(xiàn)中采用抗干擾措施。 最后,對(duì)采用本控制系統(tǒng)的埋弧焊機(jī)進(jìn)行初步實(shí)驗(yàn),結(jié)果表明本文所設(shè)計(jì)的埋弧焊機(jī)控制系統(tǒng)能夠滿足逆變埋弧自動(dòng)焊的要求,具有電路簡單,控制精度高,抗干擾能力強(qiáng)、操作方便、工作穩(wěn)定可靠等優(yōu)點(diǎn),提高了焊機(jī)的綜合性能及自動(dòng)化程度。 本課題所設(shè)計(jì)的逆變式交流方波埋弧焊電源具有良好的輸出特性和控制性能,可滿足埋弧自動(dòng)焊和手工焊的要求。采用交流方波的焊接波形、對(duì)焊接整個(gè)過程進(jìn)行實(shí)時(shí)軟件控制,電弧穩(wěn)定,焊接效果好。 關(guān)鍵詞:埋弧焊;交流方波;逆變;軟開關(guān)
上傳時(shí)間: 2013-06-08
上傳用戶:mingaili888
集成了傳感器、嵌入式計(jì)算、網(wǎng)絡(luò)和無線通信四大技術(shù)而形成的ZigBee技術(shù)是一種全新的信息獲取和處理技術(shù),能夠協(xié)作實(shí)時(shí)監(jiān)測、感知和采集各種環(huán)境或監(jiān)測對(duì)象的信息,并對(duì)信息進(jìn)行處理,傳送到需要的用戶。ZigBee技術(shù)作為一個(gè)全新的領(lǐng)域,對(duì)國內(nèi)外的研究者提出了大量的挑戰(zhàn)性課題。時(shí)鐘同步是所有分布式系統(tǒng)的重要組成部分,也是ZigBee技術(shù)的一項(xiàng)重要支撐技術(shù),大多數(shù)ZigBee技術(shù)應(yīng)用比如環(huán)境監(jiān)測系統(tǒng),導(dǎo)航系統(tǒng)等都需要所搜集的傳感數(shù)據(jù)具有準(zhǔn)確時(shí)間信息,否則采集的信息就是不完整的。 本論文介紹了國內(nèi)外在ZigBee技術(shù)的發(fā)展與現(xiàn)狀,對(duì)IEEE802.15.4/ZigBee的協(xié)議棧做了分析,對(duì)現(xiàn)存的幾種主要的時(shí)鐘同步算法做了研究。本太陽能航標(biāo)燈同步閃課題中,為了便于太陽能給航標(biāo)燈供電,需要通過休眠機(jī)制來降低功耗;為了保證ZigBee網(wǎng)絡(luò)中各設(shè)備協(xié)同工作,時(shí)鐘同步顯得更為重要,它為本系統(tǒng)中的每個(gè)航標(biāo)燈提供正確的時(shí)鐘信息,不但提高系統(tǒng)的傳輸質(zhì)量和效率,而且讓航標(biāo)燈的同步閃光,在航道中起到很好的助航作用。接著,給出了系統(tǒng)的具體實(shí)現(xiàn)過程,包括各硬件模塊的設(shè)計(jì)原理、電路原理圖及主要模塊的詳細(xì)實(shí)現(xiàn)過程。最后,指出本文的不足及需要改進(jìn)的地方。其中本文重點(diǎn)包括以下三個(gè)方面: 1.針對(duì)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)、協(xié)議體系結(jié)構(gòu)以及干擾抑制技術(shù)進(jìn)行深入分析,并與其它無線通信技術(shù)進(jìn)行比較及對(duì)其相互干擾進(jìn)行研究。 2.對(duì)ZigBee節(jié)點(diǎn)時(shí)鐘同步算法工作原理做了詳細(xì)的研究,總結(jié)了這些算法的優(yōu)缺點(diǎn),并在對(duì)比現(xiàn)有的幾種時(shí)鐘同步算法的基礎(chǔ)上對(duì)泛洪時(shí)間同步協(xié)議多跳時(shí)鐘同步算法的改進(jìn)。 3.設(shè)計(jì)了太陽能航標(biāo)燈同步閃光系統(tǒng),給出了硬件原理圖及軟件流程,并且在制PCB板中電磁兼容問題的解決進(jìn)行了詳細(xì)描述。 結(jié)果表明,該系統(tǒng)穩(wěn)定、可靠、高效,具有很高的實(shí)用價(jià)值。
標(biāo)簽: ZigBee 短距離 技術(shù)研究
上傳時(shí)間: 2013-04-24
上傳用戶:海陸空653
變頻器在各行各業(yè)中的各種設(shè)備上迅速普及應(yīng)用,已成為當(dāng)今節(jié)電、改造傳統(tǒng)工業(yè)、改善工藝流程、提高生產(chǎn)過程自動(dòng)化水平、提高產(chǎn)品質(zhì)量以及推動(dòng)技術(shù)進(jìn)步的主要手段之一,是國民經(jīng)濟(jì)和生活中普遍需要的新技術(shù)。但是現(xiàn)有變頻器的調(diào)制算法尚存在一些缺點(diǎn),如開關(guān)損耗大和共模電流大等,因此有必要研究和設(shè)計(jì)高性能調(diào)制算法的變頻控制器。鑒于此,開展了以下工業(yè)變頻器高性能調(diào)制算法為對(duì)象的研究內(nèi)容: 在闡述了工業(yè)變頻器系統(tǒng)的結(jié)構(gòu)、調(diào)制算法、調(diào)速算法的基礎(chǔ)上,結(jié)合數(shù)學(xué)模型,分析了共模電壓產(chǎn)生的原理、共模電流其影響和危害,給出了共模電壓和共模電流的關(guān)系。總結(jié)其他的抑制共模電壓的方案基礎(chǔ)上,提出一種新的共模電壓抑制SVPWM;還闡述了死區(qū)產(chǎn)生的原因及其影響,以及死區(qū)補(bǔ)償?shù)脑聿⑸鲜鰞蓚€(gè)調(diào)制算法利用MATLAB/SIMULINK軟件對(duì)該系統(tǒng)給予了全面的仿真分析。 變頻器硬件部分設(shè)計(jì)包括整流濾波電路、逆變器功率電路、上電保護(hù)電路、DSP控制系統(tǒng)及其外圍電路、IGBT驅(qū)動(dòng)及保護(hù)電路以及反激式開關(guān)電源,對(duì)于傳感器檢測濾波電路的具體電路參數(shù)設(shè)計(jì),是在PSPICE上仿真基礎(chǔ)上得出。并在考慮成本、EMC、效率等因素后考慮完成了所有硬件相關(guān)的原理圖繪制和PCB繪制; 變頻器軟件部分設(shè)計(jì)包括主程序、鍵盤掃描程序、系統(tǒng)狀態(tài)處理程序、PWM發(fā)送中斷程序、電機(jī)啟動(dòng)函數(shù)、電壓調(diào)整程序、AD采樣中斷程序以及故障保護(hù)中斷程序。在實(shí)現(xiàn)一般SVPWM的基礎(chǔ)上,根據(jù)之前理論和仿真得到的共模電壓抑制SVPWM、以及死區(qū)補(bǔ)償算法,將這兩個(gè)對(duì)SVPWM進(jìn)行改進(jìn)的調(diào)制算法在硬件平臺(tái)上實(shí)現(xiàn)。 在硬件電路完成設(shè)計(jì)的各個(gè)階段,逐漸編制相應(yīng)的控制程序,并進(jìn)行調(diào)試,并完成整個(gè)程序的編制和調(diào)試。此外,還調(diào)試了系統(tǒng)所需的反激式開關(guān)電源。整個(gè)系統(tǒng)調(diào)試中遇到了很多問題,如鍵盤消除抖動(dòng)問題、共模電壓抑制SVPWM出現(xiàn)的直通現(xiàn)象等。最終完成了工業(yè)變頻器樣機(jī),并且采用的是文章中研究的調(diào)制算法,效果良好,達(dá)到設(shè)計(jì)的目的; 提出了一種將有源功率因數(shù)校正(PFC)技術(shù)引用到串級(jí)調(diào)速中來提高定子側(cè)功率因數(shù)的新方法。通過建立電動(dòng)機(jī)折算到轉(zhuǎn)子側(cè)的等值電路,重點(diǎn)分析了有源PFC技術(shù)代替?zhèn)鹘y(tǒng)串級(jí)調(diào)速系統(tǒng)中的不控整流橋后,系統(tǒng)可以等效為轉(zhuǎn)子串電阻調(diào)速。得到了等效串電阻的計(jì)算公式和變化趨勢,對(duì)電動(dòng)機(jī)功率因數(shù)、電磁轉(zhuǎn)矩脈動(dòng)也進(jìn)行了分析,發(fā)現(xiàn)能夠比傳統(tǒng)串級(jí)調(diào)速時(shí)有所提升。鑒于電動(dòng)機(jī)轉(zhuǎn)子側(cè)電勢頻率非常低,分析了有源PFC的具體實(shí)現(xiàn)的特殊考慮和參數(shù)選取方法,并基于對(duì)稱平衡的Scott變壓器和兩個(gè)單相有源PFC電路實(shí)現(xiàn)了繞線電動(dòng)機(jī)轉(zhuǎn)子側(cè)的三相有源低頻PFC,得到超低紋波的直流輸出電壓。利用MATLAB建立了完整的仿真平臺(tái),所得結(jié)果驗(yàn)證了理論分析的正確性。
上傳時(shí)間: 2013-07-09
上傳用戶:qq442012091
BMP圖片轉(zhuǎn)換為PCB圖的軟件,可以在PCB上添加個(gè)性圖標(biāo)
上傳時(shí)間: 2013-06-04
上傳用戶:標(biāo)點(diǎn)符號(hào)
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1