This collection of circuits was worked out between June1991 and July of 1994. Most were designed at customerrequest or are derivatives of such efforts. All representsubstantial effort and, as such, are disseminated here forwider study and (hopefully) use.1 The examples areroughly arranged in categories including POwer conversion,transducer signal conditioning, amplifiers and signalgenerators. As always, reader comment and questionsconcerning variants of the circuits shown may be addresseddirectly to the author.
上傳時間: 2013-11-15
上傳用戶:凌云御清風
Notebook and palmtop systems need a multiplicity ofregulated voltages developed from a single battery. Smallsize, light weight, and high efficiency are mandatory forcompetitive solutions in this area. Small increases inefficiency extend battery life, making the final productmuch more usable with no increase in weight. Additionally,high efficiency minimizes the heat sinks needed onthe POwer regulating components, further reducing systemweight and size.
上傳時間: 2013-11-11
上傳用戶:大三三
In an increasing trend, telecommunications, networking,audio and instrumentation require low noise POwer supplies.In particular, there is interest in low noise, lowdropout linear regulators (LDO). These components POwernoise-sensitive circuitry, circuitry that contains noisesensitiveelements or both. Additionally, to conserve POwer,particularly in battery driven apparatus such as cellulartelephones, the regulators must operate with low input-tooutputvoltages.1 Devices presently becoming availablemeet these requirements (see separate section, “A Familyof 20mVRMS Noise, Low Dropout Regulators”).
上傳時間: 2013-10-30
上傳用戶:yeling1919
The LTM4601 DC/DC μModule regulator is a completehigh POwer density stepdown regulator for up to 12Acontinuous (14A peak) loads. The device is housed ina small 15mm ¥ 15mm ¥ 2.8mm LGA surface mountpackage, thus the large POwer dissipation is a challengein some applications. This thermal application note willprovide guidelines for using the μModule regulator inambient environments with or without air fl ow. Loadcurrent derating curves are provided for several inputvoltages and output voltages versus ambient temperatureand air fl ow.
上傳時間: 2013-10-19
上傳用戶:bakdesec
The LTM8020, LTM8021, LTM8022 and LTM8023 μModule®regulators are complete easy-to-use encapsulated stepdownDC/DC regulators intended to take the pain and aggravationout of implementing a switching POwer supplyonto a system board. With a μModule regulator, you onlyneed an input cap, output cap and one or two resistorsto complete the design. As one might imagine, this highlevel of integration greatly simplifi es the task of printedcircuit board design, reducing the effort to four categories:component footprint generation, component placement,routing the nets, and thermal vias.
上傳時間: 2014-01-18
上傳用戶:laomv123
Providing POwer for the Pentium® microprocessor family isnot a trivial task by any means. In an effort to simplify thistask we have developed a new switching regulator controlcircuit and a new linear regulator to address the needs ofthese processors. Considerable time has been spent developingan optimized decoupling network. Here are severalcircuits using the new LTC®1266 synchronous buck regulatorcontrol chip and the LT®1584 linear regulator toprovide POwer for Pentium processors and Pentium VREprocessors. The Pentium processor has a supply requirementof 3.3V ±5%. The Pentium VRE processor requires3.500V ±100mV.
上傳時間: 2013-11-01
上傳用戶:名爵少年
Portable, battery-POwered operation of electronic apparatushas become increasingly desirable. Medical, remotedata acquisition, POwer monitoring and other applicationsare good candidates for batteryoperation. In some circumstances,due to space, POwer or reliability considerations,it is preferable to operate the circuitry from a single 1.5Vcell. Unfortunately, a 1.5V supply eliminates almost alllinear ICs as design candidates. In fact, the LM10 opamp-reference and the LT®1017/LT1018 comparators arethe only IC gain blocks fully specifi ed for 1.5V operation.Further complications are presented by the 600mV dropof silicon transistors and diodes. This limitation consumesa substantial portion of available supply range, makingcircuit design diffi cult. Additionally, any circuit designedfor 1.5V operation mustfunction at end-of-life batteryvoltage, typically 1.3V. (See Box Section, “Componentsfor 1.5V Operation.”)
標簽: Circuitry Operation Single Cell
上傳時間: 2013-10-30
上傳用戶:hz07104032
In predominantly digital systems it is often necessaryto include linear circuit functions. Traditionally, separatePOwer supplies have been used to run the linear components(see Box, “Linear POwer Supplies—Past, Present,and Future”).
標簽: Designing Operation Circuits Linear
上傳時間: 2013-11-04
上傳用戶:sdq_123
為了改變目前電網現場作業管理的變電巡檢、變電檢修試驗、輸電線路巡檢檢修等管理系統各自獨立運行,信息不能共享,功能、效率受限,建設和維護成本高的現狀,提出了采用B/S+C/S構架模式,將各現場作業管理模塊和生產MIS(管理系統)集成為一體的現場作業管理系統的設計方案,做到各子系統和生產MIS軟硬資源共享,做到同一數據唯一入口、一處錄入多處使用。各子系統設備人員等基礎信息來源于生產管理系統,各子系統又是生產管理系統的作業數據、缺陷信息的重要來源。經過研究試用成功和推廣應用,目前該系統已在江西電網220 kV及以上變電站全面應用。 Abstract: In order to improve the status that the substation field inspection system, substation equipments maintenance and testing system, POwer-line inspection and maintenance system are running independent with each other. They can?蒺t share the resource information which accordingly constrains their functions and efficiency, and their construction and maintenance costs are high. This paper introduces a field standardized work management system based on B/S+C/S mode, integrating all field work management systems based on MIS and share the equipments and employee?蒺s data of MIS,the field work data of the sub systems are the source information of MIS, by which the same single data resouce with one-time input can be utilized in multiple places. After the research and testing, this system is triumphantly using in all 220kV and above substations in Jiangxi grid.
上傳時間: 2013-11-15
上傳用戶:han_zh
為解決直流逆變交流的問題,有效地利用能源,讓電源輸出最大功率,設計了高性能的基于IR2101最大功率跟蹤逆變器,并以SPMC75F2413A單片機作為主控制器。高電壓、高速功率的MOSFET或IGBT驅動器IR2101采用高度集成的電平轉換技術,同時上管采用外部自舉電容上電,能夠穩定高效地驅動MOS管。該逆變器可以實現DC/AC的轉換,最大功率點的跟蹤等功能。實際測試結果表明,該逆變器系統具有跟蹤能力強,穩定性高,反應靈敏等特點,該逆變器不僅可應用于普通的電源逆變系統,而且可應用于光伏并網發電的逆變系統,具有廣泛的市場前景。 Abstract: To solve the problem of DC-AC inverter, and to utilize solar energy more efficiently, the design of maximum POwer point tracking inverter based on IR2101 was achieved with a high-performance, which can make the system output POwer maximum. SPMC75F2413A was adopted as main controller. IR2101 is a high voltage, high speed POwer MOSFET and IGBT driver. It adopted highly integrated voltage level transforming technology, and an external bootstrap capacitor was used, which could drive MOS tube efficiently and stably. Many functions are achieved in the system, such as DC/AC conversion, maximun POwer point tracking, etc. The actual test result shows that the inverter system has characteristics of strong tracking ability, high stability and reacting quickly. The design can not only be used in ordinary POwer inverter system, but also be used in photovoltaic POwer inverter system. The design has certain marketing prospects
上傳時間: 2013-11-17
上傳用戶:lliuhhui