A self-designed control of PC parallel port communication is introduced in this Paper.Taking advantage of the MFC ActiveX technology, it is developed in Visual C++ and offset the scarcity of the control of PC parellel paort communication. An example of frequency measurement shows the detail procedure and application of the control.
This Paper addresses a stochastic-#ow network in which each arc or node has several capacities and may
fail. Given the demand d, we try to evaluate the system reliability that the maximum #ow of the network is
not less than d. A simple algorithm is proposed "rstly to generate all lower boundary points for d, and then
the system reliability can be calculated in terms of such points. One computer example is shown to illustrate
the solution procedure.
This Paper addresses a stochastic-#ow network in which each arc or node has several capacities and may
fail. Given the demand d, we try to evaluate the system reliability that the maximum #ow of the network is
not less than d. A simple algorithm is proposed "rstly to generate all lower boundary points for d, and then
the system reliability can be calculated in terms of such points. One computer example is shown to illustrate
the solution procedure.
This Paper addresses a stochastic-#ow network in which each arc or node has several capacities and may
fail. Given the demand d, we try to evaluate the system reliability that the maximum #ow of the network is
not less than d. A simple algorithm is proposed "rstly to generate all lower boundary points for d, and then
the system reliability can be calculated in terms of such points. One computer example is shown to illustrate
the solution procedure.
This Paper addresses a stochastic-#ow network in which each arc or node has several capacities and may
fail. Given the demand d, we try to evaluate the system reliability that the maximum #ow of the network is
not less than d. A simple algorithm is proposed "rstly to generate all lower boundary points for d, and then
the system reliability can be calculated in terms of such points. One computer example is shown to illustrate
the solution procedure.
The present Paper deals with the problem of calculating mean delays in polling systems
with either exhaustive or gated service. We develop a mean value analysis (MVA) to
compute these delay figures. The merits of MVA are in its intrinsic simplicity and its
intuitively appealing derivation. As a consequence, MVA may be applied, both in an
exact and approximate manner, to a large variety of models.