One of the very first books published on the social impact of the mobile phone
was Timo Kopomaa’s The City in Your Pocket: Birth of the Mobile Information Society.
The book, published in 2000, was based on research that Kopomaa had under-
taken for Nokia and Sonera as part of his doctoral studies in the Centre for Urban
and Regional Studies at the Helsinki University of Technology. The first line he
writes in the book is peculiar: ‘Mobile communication is not a serious matter’. By
this, we assume he is referring to a view of the world that would regard the mobile
phone as little more than an unremarkable fact of everyday life – a simple play-
thing for the young, or a productivity tool for the business executive and busy
parent.
Wireless means different things to different people. For this book, it refers
to the radio systems that provide point-to-point, point-to-multipoint, and
Earth-space communications over transmission links that propagate outside
buildings through the lower atmosphere. Wireless systems are being built
that provide data transmission between computers and other devices on
one’s own desk. These are part of the wireless world but not the part where,
except for interference perhaps, the atmosphere has any influence. The intent
of this book is to provide a description of the physical phenomena that can
affect propagation through the atmosphere, present sample measurements
and statistics, and provide models that system designers can use to calculate
their link budgets and estimate the limitations the atmosphere may place on
their design.
Quality of Service ( QoS ) has always been in a world of its own, but as the technology
has been refi ned and has evolved in recent years, QOS usage has increased to the point
where it is now considered a necessary part of network design and operation. As with
most technologies, large - scale deployments have led to the technology becoming more
mature, and QOS is no exception.
Spread-spectrum communication is a core area within the field of digital
communication. Originally used in military networks as countermeasures against
the threats of jamming and interception, spread-spectrum systems are now widely
used in commercial applications and are part of several wireless and mobile
communication standards. Although spread-spectrum communication is a staple
topic in textbooks on digital communication, its treatment is usually cursory. This
book is designed to provide a more intensive examination of the subject that is
suitable for graduate students and practicing engineers with a solid background
in the theory of digital communication. As the title indicates, this book stresses
principles rather than specific current or planned systems, which are described in
manyotherbooks.My goal in this bookis to providea concisebut lucidexplanation
of the fundamentals of spread-spectrum systems with an emphasis on theoretical
principles.
When thinking about mobile radio engineers there is a tendency to
assume that the engineering function relates solely to the technical
aspects of the network, such as the equipment design or the network
design. That is certainly a key part of the role of a mobile radio engineer.
However,increasinglyengineersarerequiredtointeractwithprofession-
als from other divisions. The “complete wireless professional” should
know about mobile networks; fixed networks; other types of mobile
systems; regulatory and government policy; the requirements of the
users; and financial, legal, and marketing issues.
When thinking about mobile radio engineers there is a tendency to
assume that the engineering function relates solely to the technical
aspects of the network, such as the equipment design or the network
design. That is certainly a key part of the role of a mobile radio engineer.
However,increasinglyengineersarerequiredtointeractwithprofession-
als from other divisions.
Public telephone operators and new independent wireless operators through-
out the world are deploying wireless access in an effort to drastically reduce
delivery costs in the most expensive part of the network?the local loop.
Available radio technology enables both existing and new entrants to access
subscribers in a rapid manner and deliver their basic telephony products and
broadband-enhanced services.
The dictionary definition of telecommunications is ‘communication over long
distance by cable, telegraph, telephone or broadcasting’, but since its initiation over
100yearsagothingshavemovedrapidly.Telecommunicationsisnowaverycomplex
industrywithmanydifferentpressures,operatinginahighlydynamic environment.It
is best viewed as part of a wider industry known as information and communication
technology (ICT). The purpose of this chapter is to explain where telecommunication
fits in, to highlight some of the complexities – hopefully to simplify them – and to
position the industry in today’s dynamic business environment.
In this first part of the book the Vienna Link Level (LL) Simulators are described.
The first chapter provides basics of LL simulations, introduces the most common
variables and parameters as well as the transceiver structures that are applied in
Long-Term Evolution (LTE) and Long-Term Evolution-Advanced (LTEA). We
focus here mostly on the Downlink (DL) of LTE as most results reported in later
chapters are related to DL transmissions.
Welcome to the world of wireless communications and the logical extension
to the broadband architectures that are emerging as the future of the
industry. No aspect of communications will be untouched by the wireless
interfaces;no part of our working environment will be left untouched either.
As the world changes and the newer technologies emerge, we can expect to
see more in the line of untethered communications than in the wired inter-
faces.