這是我在做大學(xué)教授期間推薦給我學(xué)生的一本書,非常好,適合入門學(xué)習(xí)。《python深度學(xué)習(xí)》由Keras之父、現(xiàn)任Google人工智能研究員的弗朗索瓦?肖萊(Franc?ois Chollet)執(zhí)筆,詳盡介紹了用Python和Keras進(jìn)行深度學(xué)習(xí)的探索實(shí)踐,包括計(jì)算機(jī)視覺、自然語言處理、產(chǎn)生式模型等應(yīng)用。書中包含30多個(gè)代碼示例,步驟講解詳細(xì)透徹。作者在github公布了代碼,代碼幾乎囊括了本書所有知識(shí)點(diǎn)。在學(xué)習(xí)完本書后,讀者將具備搭建自己的深度學(xué)習(xí)環(huán)境、建立圖像識(shí)別模型、生成圖像和文字等能力。但是有一個(gè)小小的遺憾:代碼的解釋和注釋是全英文的,即使英文水平較好的朋友看起來也很吃力。本人認(rèn)為,這本書和代碼是初學(xué)者入門深度學(xué)習(xí)及Keras最好的工具。作者在github公布了代碼,本人參照書本,對(duì)全部代碼做了中文解釋和注釋,并下載了代碼所需要的一些數(shù)據(jù)集(尤其是“貓狗大戰(zhàn)”數(shù)據(jù)集),并對(duì)其中一些圖像進(jìn)行了本地化,代碼全部測(cè)試通過。(請(qǐng)按照文件順序運(yùn)行,代碼前后有部分關(guān)聯(lián))。以下代碼包含了全書約80%左右的知識(shí)點(diǎn),代碼目錄:2.1: A first look at a neural network( 初識(shí)神經(jīng)網(wǎng)絡(luò))3.5: Classifying movie reviews(電影評(píng)論分類:二分類問題)3.6: Classifying newswires(新聞分類:多分類問題 )3.7: Predicting house prices(預(yù)測(cè)房價(jià):回歸問題)4.4: Underfitting and overfitting( 過擬合與欠擬合)5.1: Introduction to convnets(卷積神經(jīng)網(wǎng)絡(luò)簡介)5.2: Using convnets with small datasets(在小型數(shù)據(jù)集上從頭開始訓(xùn)練一個(gè)卷積網(wǎng)絡(luò))5.3: Using a pre-trained convnet(使用預(yù)訓(xùn)練的卷積神經(jīng)網(wǎng)絡(luò))5.4: Visualizing what convnets learn(卷積神經(jīng)網(wǎng)絡(luò)的可視化)
標(biāo)簽:
python
深度學(xué)習(xí)
上傳時(shí)間:
2022-01-30
上傳用戶: