-
I often need a simple function generator. Just to generate a certain frequency. After all the years I ve worked with electronics, I still haven t got me one. Even though I need it now and then, I just couldn t seem to justify the cost of one.
So, standard solution - build one yourself.
I designed a simple sinewave generator based on a Analog Devices AD9832 chip. It will generate a sinewave from 0.005 to 12 MHz in 0.005 Hz steps.
That s pretty good, and definitely good enough for me ! But while waiting for the AD9832 chip to arrive, I came up with a very simple version of the DDS synth, using just the 2313 and a resistor network.
標簽:
frequency
generator
function
generate
上傳時間:
2013-12-17
上傳用戶:thesk123
-
capture frames in mobile 6.0
you can edit raw data with callback function
標簽:
callback
function
capture
frames
上傳時間:
2013-11-26
上傳用戶:pkkkkp
-
function [U,center,result,w,obj_fcn]= fenlei(data)
[data_n,in_n] = size(data)
m= 2 % Exponent for U
max_iter = 100 % Max. iteration
min_impro =1e-5 % Min. improvement
c=3
[center, U, obj_fcn] = fcm(data, c)
for i=1:max_iter
if F(U)>0.98
break
else
w_new=eye(in_n,in_n)
center1=sum(center)/c
a=center1(1)./center1
deta=center-center1(ones(c,1),:)
w=sqrt(sum(deta.^2)).*a
for j=1:in_n
w_new(j,j)=w(j)
end
data1=data*w_new
[center, U, obj_fcn] = fcm(data1, c)
center=center./w(ones(c,1),:)
obj_fcn=obj_fcn/sum(w.^2)
end
end
display(i)
result=zeros(1,data_n) U_=max(U)
for i=1:data_n
for j=1:c
if U(j,i)==U_(i)
result(i)=j continue
end
end
end
標簽:
data
function
Exponent
obj_fcn
上傳時間:
2013-12-18
上傳用戶:ynzfm
-
function [U,V,num_it]=fcm(U0,X)
% MATLAB (Version 4.1) Source Code (Routine fcm was written by Richard J.
% Hathaway on June 21, 1994.) The fuzzification constant
% m = 2, and the stopping criterion for successive partitions is epsilon =??????.
%*******Modified 9/15/04 to have epsilon = 0.00001 and fix univariate bug********
% Purpose:The function fcm attempts to find a useful clustering of the
% objects represented by the object data in X using the initial partition in U0.
標簽:
fcm
function
Version
Routine
上傳時間:
2014-11-30
上傳用戶:二驅蚊器
-
function varargout = lcmgui(varargin)
% LCMGUI M-file for lcmgui.fig
% LCMGUI, by itself, creates a new LCMGUI or raises the existing
標簽:
LCMGUI
lcmgui
varargout
function
上傳時間:
2016-12-20
上傳用戶:cxl274287265
-
現代雷達普遍采用相參信號處理,而如何獲得高精度基帶數字正交( I , Q) 信號是整個系統信號處理成敗的關鍵,以前通常的做法是采用模擬相位檢波器得到I、Q信號,其正交性能一般為:幅度平衡在2 % 左右, 相位正交誤差在2°左右,即幅相誤差引入的鏡像功率在- 34dB 左右。這限制了信號處理器性能的提高, 為此, 近年來提出了對低中頻直接采樣恢復I、Q 信號的數字相位檢波器。隨著高位、高速A/ D 的研制成功和普遍應用,使得數字相位檢波方法的實現成為可能。
對信號進行中頻直接采樣和數字正交處理后,產生的I 支路和Q 支路信號序列在時間上會錯開一個采樣間隔,需要進行定序處理,恢復成同步輸出的I、Q 兩路信號序列。
標簽:
信號處理
信號
現代雷達
基帶
上傳時間:
2016-12-27
上傳用戶:yxgi5
-
This function calculates Akaike s final prediction error
% estimate of the average generalization error.
%
% [FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) produces the
% final prediction error estimate (fpe), the effective number of
% weights in the network if the network has been trained with
% weight decay, an estimate of the noise variance, and the Gauss-Newton
% Hessian.
%
標簽:
generalization
calculates
prediction
function
上傳時間:
2014-12-03
上傳用戶:maizezhen
-
This function calculates Akaike s final prediction error
% estimate of the average generalization error for network
% models generated by NNARX, NNOE, NNARMAX1+2, or their recursive
% counterparts.
%
% [FPE,deff,varest,H] = nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,skip,Chat)
% produces the final prediction error estimate (fpe), the effective number
% of weights in the network if it has been trained with weight decay,
% an estimate of the noise variance, and the Gauss-Newton Hessian.
%
標簽:
generalization
calculates
prediction
function
上傳時間:
2016-12-27
上傳用戶:腳趾頭
-
This function applies the Optimal Brain Surgeon (OBS) strategy for
% pruning neural network models of dynamic systems. That is networks
% trained by NNARX, NNOE, NNARMAX1, NNARMAX2, or their recursive
% counterparts.
標簽:
function
strategy
Optimal
Surgeon
上傳時間:
2013-12-19
上傳用戶:ma1301115706
-
中頻驗波是對信號進行中頻直接采樣和數字正交處理后,產生的I 支路和Q 支路信號序列在時間上會錯開一個采樣間隔,需要進行定序處理,恢復成同步輸出的I、Q 兩路信號序列。現代雷達普遍采用相參信號處理,而如何獲得高精度基帶數字正交( I , Q) 信號是整個系統信號處理成敗的關鍵,以前通常的做法是采用模擬相位檢波器得到I、Q信號,其正交性能一般為:幅度平衡在2 % 左右, 相位正交誤差在2°左右,即幅相誤差引入的鏡像功率在- 34dB 左右。這限制了信號處理器性能的提高, 為此, 近年來提出了對低中頻直接采樣恢復I、Q 信號的數字相位檢波器。隨著高位、高速A/ D 的研制成功和普遍應用,使得數字相位檢波方法的實現成為可能。
標簽:
信號
中頻
支路
序列
上傳時間:
2016-12-27
上傳用戶:kr770906