C++完美演繹 經典算法 如 /* 頭文件:my_Include.h */ #include <stdio.h> /* 展開C語言的內建函數指令 */ #define PI 3.1415926 /* 宏常量,在稍后章節再詳解 */ #define circle(radius) (PI*radius*radius) /* 宏函數,圓的面積 */ /* 將比較數值大小的函數寫在自編include文件內 */ int show_big_or_small (int a,int b,int c) { int tmp if (a>b) { tmp = a a = b b = tmp } if (b>c) { tmp = b b = c c = tmp } if (a>b) { tmp = a a = b b = tmp } printf("由小至大排序之后的結果:%d %d %d\n", a, b, c) } 程序執行結果: 由小至大排序之后的結果:1 2 3 可將內建函數的include文件展開在自編的include文件中 圓圈的面積是=201.0619264
標簽: my_Include include define 3.141
上傳時間: 2014-01-17
上傳用戶:epson850
源代碼\用動態規劃算法計算序列關系個數 用關系"<"和"="將3個數a,b,c依次序排列時,有13種不同的序列關系: a=b=c,a=b<c,a<b=v,a<b<c,a<c<b a=c<b,b<a=c,b<a<c,b<c<a,b=c<a c<a=b,c<a<b,c<b<a 若要將n個數依序列,設計一個動態規劃算法,計算出有多少種不同的序列關系, 要求算法只占用O(n),只耗時O(n*n).
上傳時間: 2013-12-26
上傳用戶:siguazgb
c語言版的多項式曲線擬合。 用最小二乘法進行曲線擬合. 用p-1 次多項式進行擬合,p<= 10 x,y 的第0個域x[0],y[0],沒有用,有效數據從x[1],y[1] 開始 nNodeNum,有效數據節點的個數。 b,為輸出的多項式系數,b[i] 為b[i-1]次項。b[0],沒有用。 b,有10個元素ok。
上傳時間: 2014-01-12
上傳用戶:變形金剛
直線擬合的幾種算法,其中包括線性最小二乘,和兩種不同目標函數的非線性最小二乘,用于比較這些方法的優劣,另外matlab中說的robust least squares方法沒有找到,希望有朋友能給穿一下:)
上傳時間: 2014-06-18
上傳用戶:大三三
This program demonstrates some function approximation capabilities of a Radial Basis Function Network. The user supplies a set of training points which represent some "sample" points for some arbitrary curve. Next, the user specifies the number of equally spaced gaussian centers and the variance for the network. Using the training samples, the weights multiplying each of the gaussian basis functions arecalculated using the pseudo-inverse (yielding the minimum least-squares solution). The resulting network is then used to approximate the function between the given "sample" points.
標簽: approximation demonstrates capabilities Function
上傳時間: 2014-01-01
上傳用戶:zjf3110
crc任意位生成多項式 任意位運算 自適應算法 循環冗余校驗碼(CRC,Cyclic Redundancy Code)是采用多項式的 編碼方式,這種方法把要發送的數據看成是一個多項式的系數 ,數據為bn-1bn-2…b1b0 (其中為0或1),則其對應的多項式為: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:數據“10010101”可以寫為多項式 X7+X4+X2+1。 循環冗余校驗CRC 循環冗余校驗方法的原理如下: (1) 設要發送的數據對應的多項式為P(x)。 (2) 發送方和接收方約定一個生成多項式G(x),設該生成多項式 的最高次冪為r。 (3) 在數據塊的末尾添加r個0,則其相對應的多項式為M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),獲得商Q(x)和余式R(x),則 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2運算,T(x)所對應的數據是在原數 據塊的末尾加上余式所對應的數據得到的。 (6) 發送T(x)所對應的數據。 (7) 設接收端接收到的數據對應的多項式為T’(x),將T’(x)除以G(x) ,若余式為0,則認為沒有錯誤,否則認為有錯。
上傳時間: 2014-11-28
上傳用戶:宋桃子
A fast customizable function for locating and measuring the peaks in noisy time-series signals. Adjustable parameters allow discrimination of "real" signal peaks from noise and background. Determines the position, height, and width of each peak by least-squares curve-fitting.
標簽: customizable time-series measuring function
上傳時間: 2015-08-10
上傳用戶:invtnewer
crc任意位生成多項式 任意位運算 自適應算法 循環冗余校驗碼(CRC,Cyclic Redundancy Code)是采用多項式的 編碼方式,這種方法把要發送的數據看成是一個多項式的系數 ,數據為bn-1bn-2…b1b0 (其中為0或1),則其對應的多項式為: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:數據“10010101”可以寫為多項式 X7+X4+X2+1。 循環冗余校驗CRC 循環冗余校驗方法的原理如下: (1) 設要發送的數據對應的多項式為P(x)。 (2) 發送方和接收方約定一個生成多項式G(x),設該生成多項式 的最高次冪為r。 (3) 在數據塊的末尾添加r個0,則其相對應的多項式為M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),獲得商Q(x)和余式R(x),則 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2運算,T(x)所對應的數據是在原數 據塊的末尾加上余式所對應的數據得到的。 (6) 發送T(x)所對應的數據。 (7) 設接收端接收到的數據對應的多項式為T’(x),將T’(x)除以G(x) ,若余式為0,則認為沒有錯誤,否則認為有錯
上傳時間: 2014-01-16
上傳用戶:hphh
New users and old of optimization in MATLAB will find useful tips and tricks in this document, as well as examples one can use as templates for their own problems. Use this tool by editing the file optimtips.m, then execute blocks of code in cell mode from the editor, or best, publish the file to HTML. Copy and paste also works of course. Some readers may find this tool valuable if only for the function pleas - a partitioned least squares solver based on lsqnonlin. This is a work in progress, as I fully expect to add new topics as I think of them or as suggestions are made. Suggestions for topics I ve missed are welcome, as are corrections of my probable numerous errors. The topics currently covered are listed below
標簽: optimization and document MATLAB
上傳時間: 2015-12-24
上傳用戶:佳期如夢
We address the problem of blind carrier frequency-offset (CFO) estimation in quadrature amplitude modulation, phase-shift keying, and pulse amplitude modulation communications systems.We study the performance of a standard CFO estimate, which consists of first raising the received signal to the Mth power, where M is an integer depending on the type and size of the symbol constellation, and then applying the nonlinear least squares (NLLS) estimation approach. At low signal-to noise ratio (SNR), the NLLS method fails to provide an accurate CFO estimate because of the presence of outliers. In this letter, we derive an approximate closed-form expression for the outlier probability. This enables us to predict the mean-square error (MSE) on CFO estimation for all SNR values. For a given SNR, the new results also give insight into the minimum number of samples required in the CFO estimation procedure, in order to ensure that the MSE on estimation is not significantly affected by the outliers.
標簽: frequency-offset estimation quadrature amplitude
上傳時間: 2014-01-22
上傳用戶:牛布牛