OPTOELECTRONICS CIRCUIT COLLECTION
AVALANCHE PHOTODIODE BIAS SUPPLY 1Provides an output voltage of 0V to +80V for reverse biasingan avalanche photodiode to control its gain. This circuit canalso be reconfigured to supply a 0V to –80V output.LINEAR TEC DRIVER–1This is a bridge-tied load (BTL) linear amplifier for drivinga thermoelectric cooler (TEC). It operates on a single +5Vsupply and can drive ±2A into a common TEC.LINEAR TEC DRIVER–2This is very similar to DRIVER–1 but its power output stagewas modified to operate from a single +3.3V supply in orderto increase its efficiency. Driving this amplifier from astandard +2.5V referenced signal causes the output transistorsto have unequal power dissipation.LINEAR TEC DRIVER–3This BTL TEC driver power output stage achieves very highefficiency by swinging very close to its supply rails, ±2.5V.This driver can also drive ±2A into a common TEC. Operationis shown with the power output stage operating on±1.5V supplies. Under these conditions, this linear amplifiercan achieve very high efficiency.
Application ReportThe following collection of analog circuits may be useful in electro-optics applications such as optical networkingsystems. This page summarizes their salient characteristics.
Abstract: Rail splitting is creating an artificial virtual ground as a reference voltage. It is used to set the signalto match the op amp's "sweet spot." An op amp has the most linear- and distortion-free qualities at that sweetspot. Typically, the sweet spot occurs near the center between the single power rail and ground. In the case ofa number of signals, the virtual ground can control channel DC errors when multiplexing or switching thesignals.
The CN3052A is a complete constant-current /constant voltage linear charger for single cell Li-ion and Li Polymer rechargeable batteries. The device contains an on-chip power MOSFET and eliminates the need for the external sense resistor and blocking diode.
In this paper, two types of MMIC voltage controlled oscillators have been successfully demonstrated. The first chip with single tuning diode shows the excellent tuning linearity. The second chip with two tuning diodes can improve the tuning bandwidth.
A number of conventional solutions have been available forthe design of a DC/DC converter where the output voltageis within the input voltage range—a common scenarioin Li-Ion battery-powered applications—but none werevery attractive until now. Conventional topologies, suchas SEPIC or boost followed by buck, have numerousdisadvantages, including low effi ciency, complex magnetics,polarity inversion and/or circuit complexity/cost. TheLTC®3785 buck-boost controller yields a simple, effi cient,low parts-count, single-converter solution that is easyto implement, thus avoiding the drawbacks associatedwith traditional solutions.
The LTC®3562 quad output step-down regulator is designedfor multicore handheld microprocessor applications thatoperate from a single Li-Ion battery. Its four monolithic, higheffi ciency buck regulators support Intel’s mobile CPU P-Stateand C-State energy saving operating modes. The outputvoltages are independently controllable via I2C, and eachoutput can be independently started and shut down. Designerscan choose from power saving pulse-skipping mode orBurst Mode® operation, or select low noise LDO mode. Thespace-saving LTC3562 is available in a 3mm × 3mm QFNpackage and requires few external components.
Today’s computer, datacom, and telecom systems demandpower supplies that are effi cient, respond quicklyto load transients and accurately regulate the voltageat the load. For example, load current can be measuredby using the inductor DCR, thus eliminating the needfor a dedicated sense resistor. Inductor DCR sensingincreases effi ciency—especially at heavy load—whilereducing component cost and required board space.The LTC®3856 single-output 2-phase synchronous buckcontroller improves the accuracy of inductor DCR sensingby compensating for changes in DCR due to temperature.
Once relegated to the hinterlands of low cost indicatorlights, the LED is again in the spotlight of the lightingworld. LED lighting is now ubiquitous, from car headlightsto USB-powered lava lamps. Car headlights exemplifyapplications that capitalize on the LED’s clear advantages—unwavering high quality light output, tough-assteelrobustness, inherent high effi ciency—while a USBlava lamp exemplifi es applications where only LEDs work.Despite these clear advantages, their requirement forregulated voltage and current make LED driver circuitsmore complex than the venerable light bulb, but some newdevices are closing the gap. For instance, the LTM®8040μModule™ LED driver integrates all the driver circuitryinto a single package, allowing designers to refocus theirtime and effort on the details of lighting design criticalto a product’s success.
High voltage buck DC/DC controllers such as the LTC3890(dual output) and LTC3891 (single output) are popular inautomotive applications due to their extremely wide 4V to60V input voltage range, eliminating the need for a snubberand voltage suppression circuitry. These controllersare also well suited for 48V telecom applications whereno galvanic isolation is required.