亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

STM8s Development kit

  • ultiboard PCB development

    Ultiboard PCB introduction

    標(biāo)簽: development ultiboard PCB

    上傳時(shí)間: 2013-10-09

    上傳用戶:yl1140vista

  • 采用TüV認(rèn)證的FPGA開發(fā)功能安全系統(tǒng)

    This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 圖Figure 1. Local Safety System

    標(biāo)簽: FPGA 安全系統(tǒng)

    上傳時(shí)間: 2013-11-14

    上傳用戶:zoudejile

  • Nios II軟件構(gòu)建工具入門

    Nios II軟件構(gòu)建工具入門 The Nios® II Software Build Tools (SBT) allows you to construct a wide variety of complex embedded software systems using a command-line interface. From this interface, you can execute Software Built Tools command utilities, and use scripts other tools) to combine the command utilities in many useful ways. This chapter introduces you to project creation with the SBT at the command line This chapter includes the following sections: ■ “Advantages of Command-Line Software Development” ■ “Outline of the Nios II SBT Command-Line Interface” ■ “Getting Started in the SBT Command Line” ■ “Software Build Tools Scripting Basics” on page 3–8

    標(biāo)簽: Nios 軟件

    上傳時(shí)間: 2013-11-15

    上傳用戶:nanxia

  • 面向Eclips的Nios II軟件構(gòu)建工具手冊(cè)

    面向Eclips的Nios II軟件構(gòu)建工具手冊(cè) The Nios® II Software Build Tools (SBT) for Eclipse™ is a set of plugins based on the Eclipse™ framework and the Eclipse C/C++ development toolkit (CDT) plugins. The Nios II SBT for Eclipse provides a consistent development platform that works for all Nios II embedded processor systems. You can accomplish all Nios II software development tasks within Eclipse, including creating, editing, building, running, debugging, and profiling programs.

    標(biāo)簽: Eclips Nios 軟件

    上傳時(shí)間: 2013-11-02

    上傳用戶:瓦力瓦力hong

  • Employing a Single-Chip Transceiver in Femtocell Base-Station Applications

    Abstract: This application note discusses the development and deployment of 3G cellular femtocell base stations. The technicalchallenges for last-mile residential connectivity and adding system capacity in dense urban environments are discussed, with 3Gfemtocell base stations as a cost-effective solution. Maxim's 3GPP TS25.104-compliant transceiver solution is presented along withcomplete radio reference designs such as RD2550. For more information on the RD2550, see reference design 5364, "FemtocellRadio Reference Designs Using the MAX2550–MAX2553 Transceivers."

    標(biāo)簽: Base-Station Applications Single-Chip Transceiver

    上傳時(shí)間: 2013-11-05

    上傳用戶:超凡大師

  • xilinx Zynq-7000 EPP產(chǎn)品簡(jiǎn)介

    The Xilinx Zynq-7000 Extensible Processing Platform (EPP) redefines the possibilities for embedded systems, giving system and software architects and developers a flexible platform to launch their new solutions and traditional ASIC and ASSP users an alternative that aligns with today’s programmable imperative. The new class of product elegantly combines an industrystandard ARMprocessor-based system with Xilinx 28nm programmable logic—in a single device. The processor boots first, prior to configuration of the programmable logic. This, along with a streamlined workflow, saves time and effort and lets software developers and hardware designers start development simultaneously. 

    標(biāo)簽: xilinx Zynq 7000 EPP

    上傳時(shí)間: 2013-10-09

    上傳用戶:evil

  • US Navy VHDL Modelling Guide

      This document was developed under the Standard Hardware and Reliability Program (SHARP) TechnologyIndependent Representation of Electronic Products (TIREP) project. It is intended for use by VHSIC HardwareDescription Language (VHDL) design engineers and is offered as guidance for the development of VHDL modelswhich are compliant with the VHDL Data Item Description (DID DI-EGDS-80811) and which can be providedto manufacturing engineering personnel for the development of production data and the subsequent productionof hardware. Most VHDL modeling performed to date has been concentrated at either the component level orat the conceptual system level. The assembly and sub-assembly levels have been largely disregarded. Under theSHARP TIREP project, an attempt has been made to help close this gap. The TIREP models are based upon lowcomplexity Standard Electronic Modules (SEM) of the format A configuration. Although these modules are quitesimple, it is felt that the lessons learned offer guidance which can readily be applied to a wide range of assemblytypes and complexities.

    標(biāo)簽: Modelling Guide Navy VHDL

    上傳時(shí)間: 2013-11-20

    上傳用戶:pzw421125

  • FPGA設(shè)計(jì)重利用方法(Design Reuse Methodology)

      FPGAs have changed dramatically since Xilinx first introduced them just 15 years ago. In thepast, FPGA were primarily used for prototyping and lower volume applications; custom ASICswere used for high volume, cost sensitive designs. FPGAs had also been too expensive and tooslow for many applications, let alone for System Level Integration (SLI). Plus, the development

    標(biāo)簽: Methodology Design Reuse FPGA

    上傳時(shí)間: 2013-11-01

    上傳用戶:shawvi

  • CPLD庫指南

    Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information.  

    標(biāo)簽: CPLD

    上傳時(shí)間: 2014-12-05

    上傳用戶:qazxsw

  • 基于FPGA+DSP模式的智能相機(jī)設(shè)計(jì)

    針對(duì)嵌入式機(jī)器視覺系統(tǒng)向獨(dú)立化、智能化發(fā)展的要求,介紹了一種嵌入式視覺系統(tǒng)--智能相機(jī)。基于對(duì)智能相機(jī)體系結(jié)構(gòu)、組成模塊和圖像采集、傳輸和處理技術(shù)的分析,對(duì)國(guó)內(nèi)外的幾款智能相機(jī)進(jìn)行比較。綜合技術(shù)發(fā)展現(xiàn)狀,提出基于FPGA+DSP模式的硬件平臺(tái),并提出智能相機(jī)的發(fā)展方向。分析結(jié)果表明,該系統(tǒng)設(shè)計(jì)可以實(shí)現(xiàn)脫離PC運(yùn)行,完成圖像獲取與分析,并作出相應(yīng)輸出。 Abstract:  This paper introduced an embedded vision system-intelligent camera ,which was for embedded machine vision systems to an independent and intelligent development requirements. Intelligent camera architecture, component modules and image acquisition, transmission and processing technology were analyzed. After comparing integrated technology development of several intelligent cameras at home and abroad, the paper proposed the hardware platform based on FPGA+DSP models and made clear direction of development of intelligent cameras. On the analysis of the design, the results indicate that the system can run from the PC independently to complete the image acquisition and analysis and give a corresponding output.

    標(biāo)簽: FPGA DSP 模式 智能相機(jī)

    上傳時(shí)間: 2013-11-14

    上傳用戶:無聊來刷下

主站蜘蛛池模板: 呼玛县| 曲水县| 托克托县| 兰考县| 文登市| 汝阳县| 炉霍县| 宝清县| 昭通市| 安顺市| 册亨县| 博白县| 荔波县| 阿勒泰市| 绥中县| 富阳市| 铜鼓县| 丹阳市| 佛山市| 周至县| 建湖县| 北京市| 郧西县| 镇远县| 定州市| 灵璧县| 河北区| 阳朔县| 娄烦县| 霞浦县| 玉林市| 西乡县| 通化市| 顺平县| 沈阳市| 拜城县| 济阳县| 无锡市| 江北区| 昌吉市| 宁海县|