FEATURES
Unique 1-Wire interface requires only one port pin for communication
Multidrop capability simplifies distributed temperature sensing applications
Requires no external components
Can be powered from data line. Power supply range is 3.0V to 5.5V
Zero standby power required
Measures temperatures from -55°C to +125°C. Fahrenheit equivalent is -67°F to +257°F
±0.5°C accuracy from -10°C to +85°C
Thermometer resolution is programmable from 9 to 12 bits
Converts 12-bit temperature to digital word in 750 ms (max.)
User-definable, nonvolatile temperature alarm settings
Alarm search command identifies and addresses devices whose temperature is outside of programmed limits (temperature
alarm condition)
Applications include thermostatic controls, industrial systems, consumer products,
thermometers, or any thermally sensitive system
針對材料試驗機等設備中要求測量或控制材料拉伸或壓縮的位移,一般采用光電軸角編碼器檢測位置信號,輸出正交編碼脈沖信號。若采用其他方法檢測位置信號,必然導致電路設計復雜,可靠性降低。因此,提出一種基于LS7266R1的電子式萬能材料試驗機設計方案。給出了試驗機中的控制器工作原理,LS7266R1與單片機的接口硬件設計,以及主程序軟件流程圖。巧妙地把力量傳感器,位移傳感器等機械運動狀態的壓力或拉力以及位置坐標,變成了電壓信號和電脈沖數字信號,供A/D測量和LS7266R1計數,從而實現了獨立完成材料試驗控制或通過PC機串口命令完成材料試驗控制。
Abstract:
Aiming at the requirement that the displacement of the tension and compression always be tested and controlled in the equipement such as material testing machine. The position signal was tested by photoelectric axial angle coder. Therefore, the paper proposes the design of electronic universal testing machine design based on LS7266R1. If the position signal detected by other methods, will inevitably lead to the circuit design complexity, reliability decreased. The work theory of the controller, the hardware interface design between LS7266R1 and single chip, and the flow chart of main program, are presented in this paper. The signal of the compression or tension power and displacement at working, which tested by power sensor and displacement sensor especially, is changed into electric voltage and electric pulse numerical signals. And these signals can be tested by A/D and counted by LS7266R1. Finally the test of the material properties can be controlled by itself, or controlled by the COM command of PC.
The bootloader is stored in the internal boot ROM memory (system memory) of STM32devices. It is programmed by ST during production. Its main task is to download theapplication program to the internal Flash memory through one of the available serialperipherals (USART, CAN, USB, etc.). A communication protocol is defined for each serialinterface, with a compatible command set and sequences
MPLAB C30用戶指南(英文)
HIGHLIGHTSThe information covered in this chapter is as follows:• About this Guide• Recommended Reading• Troubleshooting• The Microchip Web Site• Development Systems Customer Notification Service• Customer Support
Document LayoutThe document layout is as follows:• Chapter 1: Compiler Overview – describes MPLAB C30, development tools andfeature set.• Chapter 2: Differences between MPLAB C30 and ANSI C – describes thedifferences between the C language supported by MPLAB C30 syntax and thestandard ANSI-89 C.• Chapter 3: Using MPLAB C30 – describes how to use the MPLAB C30 compilerfrom the command line.• Chapter 4: MPLAB C30 Runtime Environment – describes the MPLAB C30runtime model, including information on sections, initialization, memory models, thesoftware stack and much more.• Chapter 5: Data Types – describes MPLAB C30 integer, floating point and pointerdata types.• Chapter 6: Device Support Files – describes the MPLAB C30 header and registerdefinition files, as well as how to use with SFR’s.• Chapter 7: Interrupts – describes how to use interrupts.• Chapter 8: Mixing Assembly Language and C Modules – provides guidelines tousing MPLAB C30 with MPLAB ASM30 assembly language modules.