The target of the assignment is to familiarize the student with MIMO channel modeling.
The work is based on L. Schumacher’s MIMO channel model implementation, with
added capacity analysis. First the channel model implementation is introduced, and
thereafter analysis on MIMO channel with different parameters is done. Finally a short
report on the results is written.
This book describes and offers several solutions to many issues. It is geared to meet the immediate
and long-term needs of the professional network programmer.
matlab有限元網格劃分程序
DistMesh is a simple MATLAB code for generation of unstructured triangular and tetrahedral meshes. It was developed by Per-Olof Persson (now at UC Berkeley) and Gilbert Strang in the Department of Mathematics at MIT. A detailed description of the program is provided in our SIAM Review paper, see documentation below.
One reason that the code is short and simple is that the geometries are specified by Signed Distance Functions. These give the shortest distance from any point in space to the boundary of the domain. The sign is negative inside the region and positive outside. A simple example is the unit circle in 2-D, which has the distance function d=r-1, where r is the distance from the origin. For more complicated geometries the distance function can be computed by interpolation between values on a grid, a common representation for level set methods.
For the actual mesh generation, DistMesh uses the Delaunay triangulation routine in MATLAB and tries to optimize the node locations by a force-based smoothing procedure. The topology is regularly updated by Delaunay. The boundary points are only allowed to move tangentially to the boundary by projections using the distance function. This iterative procedure typically results in very well-shaped meshes.
Our aim with this code is simplicity, so that everyone can understand the code and modify it according to their needs. The code is not entirely robust (that is, it might not terminate and return a well-shaped mesh), and it is relatively slow. However, our current research shows that these issues can be resolved in an optimized C++ code, and we believe our simple MATLAB code is important for demonstration of the underlying principles.
To use the code, simply download it from below and run it from MATLAB. For a quick demonstration, type "meshdemo2d" or "meshdemond". For more details see the documentation.
Introduction
jSMPP is a java implementation (SMPP API) of the SMPP protocol (currently supports SMPP v3.4). It provides interfaces to communicate with a Message Center or an ESME (External Short Message Entity) and is able to handle traffic of 3000-5000 messages per second.
jSMPP is not a high-level library. People looking for a quick way to get started with SMPP may be better of using an abstraction layer such as the Apache Camel SMPP component: http://camel.apache.org/smpp.html
Travis-CI status:
History
The project started on Google Code: http://code.google.com/p/jsmpp/
It was maintained by uudashr on Github until 2013.
It is now a community project maintained at http://jsmpp.org
Release procedure
mvn deploy -DperformRelease=true -Durl=https://oss.sonatype.org/service/local/staging/deploy/maven2/ -DrepositoryId=sonatype-nexus-staging -Dgpg.passphrase=<yourpassphrase>
log in here: https://oss.sonatype.org
click the 'Staging Repositories' link
select the repository and click close
select the repository and click release
License
Copyright (C) 2007-2013, Nuruddin Ashr uudashr@gmail.com Copyright (C) 2012-2013, Denis Kostousov denis.kostousov@gmail.com Copyright (C) 2014, Daniel Pocock http://danielpocock.com Copyright (C) 2016, Pim Moerenhout pim.moerenhout@gmail.com
This project is licensed under the Apache Software License 2.0.
The BTS5016SDA is a one channel high-side power switch in PG-TO252-5-11 package providing embedded
protective functions.
The power transistor is built by a N-channel vertical power MOSFET with charge pump. The design is based on
Smart SIPMOS chip on chip technology.
The BTS5016SDA has a current controlled input and offers a diagnostic feedback with load current sense and a
defined fault signal in case of overload operation, overtemperature shutdown and/or short circuit shutdown.
The AZ1117 is a series of low dropout three-terminal regulators with a dropout of 1.15V at 1A output current.
The AZ1117 series provides current limiting and thermal shutdown. Its circuit includes a trimmed bandgap reference to assure output voltage accuracy to be within 1% for 1.5V, 1.8V, 2.5V, 2.85V, 3.3V, 5.0V and adjustable versions or 2% for 1.2V version. Current limit is trimmed to ensure specified output current and controlled short-circuit current. On-chip thermal shutdown provides protection against any combination of overload and ambient temperature that would create excessive junction temperature.
The AZ1117 has an adjustable version, that can provide the output voltage from 1.25V to 12V with only 2 external resistors.
Digital cellular telecommunications system (Phase 2+);
Technical realization of the Short Message Service (SMS)
Point-to-Point (PP)
(3GPP TS 03.40 version 7.5.0 Release 1998)
Delphi三層數據庫連接池 (1)
Connection Pool for Delphi release notes
-------------------------------------------------------------------------------
This document contains:
- Short description of the product
- Other text files
- TRIAL version limitations
- Delphi - versions supported
- Installation of Connection Pool for Delphi
- Installation of Connection Pool for Delphi help file
- Ordering information
- Support and Web resources
- Thanks To