Heterogeneous Network (HetNet): A network that consists of a mix of macro cells and low-power
nodes, e.g. Pico, Femto, Relay Node (RN) and Remote Radio Head (RRH)
Rapid progress in information and communications technology (ICT) induces
improved and new telecommunications services and contributes greatly to society
in general and to vendors and network and service providers. In addition to existing
services such as telephony or leased line services, spread of the Internet, the Internet
Protocol (IP) phone, and new communications services like IPTV are making great
progress with the development of digital subscriber lines (DSL) and high - speed
communications technologies like fi ber to the home (FTTH).
Once upon a time, cellular wireless networks provided two basic services: voice
telephony and low-rate text messaging. Users in the network were separated
by orthogonal multiple access schemes, and cells by generous frequency reuse
patterns [1]. Since then, the proliferation of wireless services, fierce competition,
andthe emergenceof new service classes such as wireless data and multimediahave
resulted in an ever increasing pressure on network operators to use resources in a
moreefficient manner.In the contextof wireless networks,two of the most common
resources are power and spectrum—and, due to regulations, these resources are
typically scarce. Hence, in contrast to wired networks, overprovisioning is not
feasible in wireless networks.
Visible light communications (VLC) is the name given to an optical wireless
communication system that carries information by modulating light in the visible spectrum
(400–700 nm) that is principally used for illumination [1–3]. The communications signal
is encoded on top of the illumination light. Interest in VLC has grown rapidly with the
growth of high power light emitting diodes (LEDs) in the visible spectrum. The
motivation to use the illumination light for communication is to save energy by exploiting
the illumination to carry information and, at the same time, to use technology that is
“green” in comparison to radio frequency (RF) technology, while using the existing
infrastructure of the lighting system.
Dear Reader, this book project brings to you a unique study tool for ESD
protection solutions used in analog-integrated circuit (IC) design. Quick-start
learning is combined with in-depth understanding for the whole spectrum of cross-
disciplinary knowledge required to excel in the ESD field. The chapters cover
technical material from elementary semiconductor structure and device levels up
to complex analog circuit design examples and case studies.
Since electronic equipment was first developed, static electricity has been a
source of problems for users and designers. In the last few years, however,
electrostatic discharge (ESD) has become a source of major problems. This
has occurred because newer electronic devices, such as integrated circuits,
are much more susceptible to ESD problems than previous devices, such as
vacuum tubes. Another trend compounding this ESD susceptibility problem
is the spread of sophisticated equipment into home and office environments
where ESD is quite common.
Applications of microelectromechanical systems (MEMS) and microfabrica-
tion have spread to different fields of engineering and science in recent years.
Perhaps the most exciting development in the application of MEMS technol-
ogy has occurred in the biological and biomedical areas. In addition to key
fluidic components, such as microvalves, pumps, and all kinds of novel
sensors that can be used for biological and biomedical analysis and mea-
surements, many other types of so-called micro total analysis systems (TAS)
have been developed.
Resource allocation is an important issue in wireless communication networks. In
recent decades, cognitive radio technology and cognitive radio-based networks have
obtained more and more attention and have been well studied to improve spectrum
utilization and to overcomethe problem of spectrum scarcity in future wireless com-
munication systems. Many new challenges on resource allocation appear in cogni-
tive radio-based networks. In this book, we focus on effective solutions to resource
allocation in several important cognitive radio-based networks, including a cogni-
tive radio-basedopportunisticspectrum access network, a cognitiveradio-basedcen-
tralized network, a cognitive radio-based cellular network, a cognitive radio-based
high-speed vehicle network, and a cognitive radio-based smart grid.
EN 300220-1V2.4.1 Electromagnetic compatibility and Radio spectrum Matters (ERM);Short Range Devices (SRD);Radio equipment to be used in the 25 MHz to 1 000 MHz frequency range with power levels ranging up to 500 mW; Part 1: Technical characteristics and test methods