For the incomplete methods, we kept the representation of the queens by a table and the method of calculation to determine if two queens are in conflict, which is much faster for this kind of problems than the representation by a matrix.
heuristics: descent.
Tests: 100 queens in less than 1 second and 67 iterations. 500 queens in 1 second and 257 iterations. 1000 queens in 11 seconds and 492 iterations.
heuristics: Simulated annealing.
Tests: 100 queens in less than 1 second and 47 iterations. 500 queens in 5 seconds and 243 iterations. 1000 queens in 13 seconds and 497 iterations.
heuristics: based on Simulated Annealing.
Tests: 100 queens in less than 1 second and 60 iterations. 500 queens in 1 second and 224 iterations. 1000 queens in 5 seconds and 459 iterations. 10 000 queens in 20 minutes 30 seconds and 4885 iterations.
物流分析工具包。Facility location: Continuous minisum facility location, alternate location-allocation (ALA) procedure, discrete uncapacitated facility location
Vehicle routing: VRP, VRP with time windows, traveling salesman problem (TSP)
Networks: Shortest path, min cost network flow, minimum spanning tree problems
Geocoding: U.S. city or ZIP code to longitude and latitude, longitude and latitude to nearest city, Mercator projection plotting
Layout: Steepest descent pairwise interchange (SDPI) heuristic for QAP
Material handling: Equipment selection
General purpose: Linear programming using the revised simplex method, mixed-integer linear programming (MILP) branch and bound procedure
Data: U.S. cities with populations of at least 10,000, U.S. highway network (Oak Ridge National Highway Network), U.S. 3- and 5-digit ZIP codes
% COMPDIR Computes a search direction in a subspace defined by Z.
% Helper function for NLCONST.
% Returns Newton direction if possible.
% Returns random direction if gradient is small.
% Otherwise, returns steepest descent direction.
% If the steepest descent direction is small it computes a negative
% curvature direction based on the most negative eigenvalue.
% For singular matrices, returns steepest descent even if small.
用于汽車巡航控制系統的模糊控制算法,以及如何利用梯度下降法和卡爾曼濾波來優化模糊控制器的算法。The files illustrate a simple fuzzy control algorithm as applied to an automobile cruise control system. The files also illustrate how gradient descent and Kalman filtering can be used to optimize the fuzzy controller .