首先研究CAN總線和SAE J1939協議,提出一種基于MC9S12HZ256微控制器的總線式汽車數字儀表解決方案。詳細介紹SAE J1939協議的報文幀格式及應用層協議中發動機相關參數的定義,以及步進電機及其驅動和車速信號的處理方法。該數字儀表系統硬件平臺由微處理器和信號采集和信息處理及顯示等模塊組成。軟件設計部分編程實現了對CAN總線和各傳感器數據的讀取、處理。該系統能夠實時反映車輛工況。
Abstract:
In this paper,CAN bus and SAE J1939protocol are researched,and a vehicle digital instrument solution based on MC9S12HZ256MCU is proposed.The message frame format and some engine-related parameters’definition in SAE J1939application layer protocol are introduced in detail.Stepper motor and its driver,the methods of speed signal process-ing are also introduced.The hardware platform of vehicle digital instrument is composed by MCU,signal acquisition mod-ule,and signal processing and displaying module.Data receiving and processing from CAN bus and sensors are accom-plished by programming,and vehicle condition can be reflected in real-time.
The goal of our final project was to design an efficient elevator simulator that can accept input from a user and mechanically operate (on a small scale) a system of 4 floors and 3 elevators using pulleys and Stepper motors. Users enter input using physical pushbuttons or the computer. This input is then processed by the MCU and orders are given to the elevators. We attempted to devise an algorithm that can optimally handle any number of floors. This project seemed like a fun challenge and something that had practical applications. Both of us have been frustrated at times by the inefficiency of some of the elevators here at Cornell, and we wanted to see if we could do a better job.
Servomotors are available as AC or DC motors. Early servomotors were generally DC motors because the only type of control for large currents was through SCRs for many years. As transistors became capable of controlling larger currents and switching the large currents at higher frequencies, the AC servomotor became used more often. Early servomotors were specifically designed for servo amplifiers. Today a class of motors is designed for applica-tions that may use a servo amplifier or a variable-frequency controller, which means that a motor may be used in a servo system in one application, and used in a variable-frequency drive in another application. Some companies also call any closed-loop system that does not use a Stepper motor a servo system, so it is possible for a simple AC induction motor that is connected to a velocity controller to be called a servomotor.
該步進電機驅動器又稱為EasyDriver,EasyDriver能夠為兩級步進電機提供大約每相750mA(兩極一共1.5A)的驅動。它默認設置為8步細分模式(所以如果你的電機是每圈200步,你使用EasyDriver時默認為每圈1600步),更多細分模式可以通過將MS1或MS2兩個接腳接地進行設置。這是一種基于Allegro A3967驅動芯片的細分斷路器。對于此設計的完整規格,請查閱A3967的參數表。它的最大每相電流從150mA到750mA。可以采用的最大驅動電壓大概是30V,其中包括板載5V的調壓器,所以只需要一個電源。質優價廉,這玩意兒只要十幾美元,比你自己制作電路板更便宜。步進電機驅動器設計特色:· A3967 Microstepping Driver· MS1 and MS2 pins broken out to change microstepping resolution to full, half, quarter and eighth steps (defaults to eighth)· Compatible with 4, 6, and 8 wire Stepper motors of any voltage· Adjustable current control from 150mA/phase to 700mA/phase· Power supply range from 6V to 30V. The higher the voltage, the higher the torque at high speeds