The government of a small but important country has decided that the alphabet needs to be streamlined and reordered. Uppercase letters will be eliminated. They will issue a royal decree in the form of a String of B and A characters. The first character in the decree specifies whether a must come ( B )Before b in the new alphabet or ( A )After b . The second character determines the relative placement of b and c , etc. So, for example, "BAA" means that a must come Before b , b must come After c , and c must come After d .
Any letters beyond these requirements are to be excluded, so if the decree specifies k comparisons then the new alphabet will contain the first k+1 lowercase letters of the current alphabet.
Create a class Alphabet that contains the method choices that takes the decree as input and returns the number of possible new alphabets that conform to the decree. If more than 1,000,000,000 are possible, return -1.
Definition
This paper presents several low-latency mixed-timing
FIFO (first-in–first-out) interfaces designs that interface systems
on a chip working at different speeds. The connected systems
can be either synchronous or asynchronous. The designs are then
adapted to work between systems with very long interconnect
delays, by migrating a single-clock solution by Carloni et al.
(1999, 2000, and 2001) (for “l(fā)atency-insensitive” protocols) to
mixed-timing domains. The new designs can be made arbitrarily
robust with regard to metastability and interface operating speeds.
Initial simulations for both latency and throughput are promising.
Introduction
A shared library is a collection of functions that are available for use by one or more applications running on a system. On Windows operating systems, the library is compiled into a dynamic link library (.dll) file. At run-time, the library is loaded into memory and made accessible to all applications.
The MIPS32® 4KEm™ core from MIPS® Technologies is a member of the MIPS32 4KE™ processor core family. It is a
high-performance, low-power, 32-bit MIPS RISC core designed for custom system-on-silicon applications. The core is
designed for semiconductor manufacturing companies, ASIC developers, and system OEMs who want to rapidly integrate
their own custom logic and peripherals with a high-performance RISC processor. It is highly portable across processes, and
can be easily integrated into full system-on-silicon designs, allowing developers to focus their attention on end-user
products. The 4KEm core is ideally positioned to support new products for emerging segments of the digital consumer,
network, systems, and information management markets, enabling new tailored solutions for embedded applications.
漢諾塔!!!
Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation
eg. if n = 2 A→B A→C B→C
if n = 3 A→C A→B C→B A→C B→A B→C A→C