Design techniques for electronic systems areconstantly changing. In industries at the heart of thedigital revolution, this change is especially acute.Functional integration, dramatic increases incomplexity, new standards and protocols, costconstraints, and increased time-to-market pressureshave bolstered both the design challenges and theopportunities to develop modern electronic systems.One trend driving these changes is the increasedintegration of core logic with previously discretefunctions to achieve higher performance and morecompact board designs.
上傳時間: 2014-12-28
上傳用戶:康郎
This application note contains a reference design consisting of HDL IP and Xilinx AdvancedConfiguration Environment (ACE) software utilities that give designers great flexibility increating in-system programming (ISP) solutions. In-system programming support allowsdesigners to revise existing designs, package the new bitstream programming files with theprovided software utilities, and update the remote system through the JTAG interface using theEmbedded JTAG ACE Player.
上傳時間: 2013-11-14
上傳用戶:JIMMYCB001
Express Mode uses an 8-bit wide bus path for fast configuration of Xilinx FPGAs. Thisapplication note provides information on how to perform Express configuration specifically forthe Spartan™-XL family. The Express mode signals and their associated timing are defined.The steps of Express configuration are described in detail, followed by detailed instructions thatshow how to implement the configuration circui
標簽: Spartan-XL Express XAPP FPGA
上傳時間: 2014-12-28
上傳用戶:hewenzhi
Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the developmentof designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit theDocumentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reservesthe right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errorscontained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection withtechnical support or assistance that may be provided to you in connection with the Information.
上傳時間: 2014-01-13
上傳用戶:竺羽翎2222
According to CIBC World Markets, Equity Research, theFlat Panel Display (FPD) industry has achieved sufficientcritical mass for its growth to explode. Thus, it can nowattract the right blend of capital investments and R&Dresources to drive technical innovation toward continuousimprovement in view quality, manufacturing efficiency,and system integration. These in turn are sustainingconsumer interest, penetration, revenue growth, and thepotential for increasing long-term profitability for industryparticipants. CIBC believes that three essential conditionsare now converging to drive the market forward
上傳時間: 2013-10-18
上傳用戶:日光微瀾
WP369可擴展式處理平臺-各種嵌入式系統的理想解決方案 :Delivering unrivaled levels of system performance,flexibility, scalability, and integration to developers,Xilinx's architecture for a new Extensible Processing Platform is optimized for system power, cost, and size. Based on ARM's dual-core Cortex™-A9 MPCore processors and Xilinx’s 28 nm programmable logic,the Extensible Processing Platform takes a processor-centric approach by defining a comprehensive processor system implemented with standard design methods. This approach provides Software Developers a familiar programming environment within an optimized, full featured,powerful, yet low-cost, low-power processing platform.
上傳時間: 2013-10-22
上傳用戶:685
本文著重介紹了 Xilinx Platform Flash PROM 如何幫助系統和電路板設計人員簡化 FPGA 配置設計。用于配置 FPGA 的可選解決方案有很多,但它們通常都需要大量的前期設計工作和時間。Platform Flash 是為配置 Xilinx FPGA 專門設計的一款包括硬件和軟件支持在內的整體解決方案。
上傳時間: 2013-11-04
上傳用戶:ifree2016
This application note covers the design considerations of a system using the performance features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The design focuses on high system throughput through the AXI Interconnect core with F MAX and area optimizations in certain portions of the design. The design uses five AXI video direct memory access (VDMA) engines to simultaneously move 10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary video timing signals. Data read by each AXI VDMA is sent to a common on-screen display (OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream. The output of the OSD core drives the DVI video display interface on the board. Performance monitor blocks are added to capture performance data. All 10 video streams moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are controlled by a MicroBlaze™ processor. The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the Xilinx® ML605 Rev D evaluation board
上傳時間: 2013-11-14
上傳用戶:fdmpy
FPGAs have changed dramatically since Xilinx first introduced them just 15 years ago. In thepast, FPGA were primarily used for prototyping and lower volume applications; custom ASICswere used for high volume, cost sensitive designs. FPGAs had also been too expensive and tooslow for many applications, let alone for System Level Integration (SLI). Plus, the development
標簽: Methodology Design Reuse FPGA
上傳時間: 2013-10-23
上傳用戶:旗魚旗魚
XAPP520將符合2.5V和3.3V I/O標準的7系列FPGA高性能I/O Bank進行連接 The I/Os in Xilinx® 7 series FPGAs are classified as either high range (HR) or high performance (HP) banks. HR I/O banks can be operated from 1.2V to 3.3V, whereas HP I/O banks are optimized for operation between 1.2V and 1.8V. In circumstances that require an HP 1.8V I/O bank to interface with 2.5V or 3.3V logic, a range of options can be deployed. This application note describes methodologies for interfacing 7 series HP I/O banks with 2.5V and 3.3V systems
上傳時間: 2013-11-19
上傳用戶:yyyyyyyyyy