梯形公式計算面積近似值:In=Tn=h/2(f(a)+f(b)) 變長梯形面積:T2n=Tn/2+h/2∑f(Xk+h/2) 辛普生面積:I2n=(4T2n-Tn)/3
上傳時間: 2016-01-06
上傳用戶:qw12
拓普微公司液晶模塊 Tn LCM驅動程序2。
上傳時間: 2016-02-20
上傳用戶:wkchong
Tn-kernel內核針對LPC系列ARM7處理器和S3C44B0X重新定制好的源代碼包。內含Nano-X GUI。
標簽: Tn-kernel S3C44B0X Nano-X ARM7
上傳時間: 2016-11-29
上傳用戶:ghostparker
筆段型Tn LCM測試,使用51測試平臺就可以了,很簡單
上傳時間: 2017-01-04
上傳用戶:wxhwjf
加密的步驟 1) 計算N的有效位數(shù)Tn(以字節(jié)數(shù)計),將最高位的零忽略掉,令Tn1=Tn-1。比如N=0x012A05,其有效位數(shù)Tn=5,Tn1=4。 2) 將明文數(shù)據(jù)A分割成Tn1位(以字節(jié)數(shù)計)的塊,每塊看成一個大數(shù),塊數(shù)記為bn。從而,保證了每塊都小于N。 3) 對A的每一塊Ai進行Bi=Ai^E MOD N運算。Bi就是密文數(shù)據(jù)的一塊,將所有密文塊合并起來,就得到了密文數(shù)據(jù)B。
上傳時間: 2014-12-05
上傳用戶:caozhizhi
摘要: 介紹了時鐘分相技術并討論了時鐘分相技術在高速數(shù)字電路設計中的作用。 關鍵詞: 時鐘分相技術; 應用 中圖分類號: Tn 79 文獻標識碼:A 文章編號: 025820934 (2000) 0620437203 時鐘是高速數(shù)字電路設計的關鍵技術之一, 系統(tǒng)時鐘的性能好壞, 直接影響了整個電路的 性能。尤其現(xiàn)代電子系統(tǒng)對性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時鐘設計上面。但隨著系統(tǒng)時鐘頻率的升高。我們的系統(tǒng)設計將面臨一系列的問 題。 1) 時鐘的快速電平切換將給電路帶來的串擾(Crosstalk) 和其他的噪聲。 2) 高速的時鐘對電路板的設計提出了更高的要求: 我們應引入傳輸線(T ransm ission L ine) 模型, 并在信號的匹配上有更多的考慮。 3) 在系統(tǒng)時鐘高于100MHz 的情況下, 應使用高速芯片來達到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時鐘相應的電磁輻射(EM I) 比較嚴重。 所以在高速數(shù)字系統(tǒng)設計中對高頻時鐘信號的處理應格外慎重, 盡量減少電路中高頻信 號的成分, 這里介紹一種很好的解決方法, 即利用時鐘分相技術, 以低頻的時鐘實現(xiàn)高頻的處 理。 1 時鐘分相技術 我們知道, 時鐘信號的一個周期按相位來分, 可以分為360°。所謂時鐘分相技術, 就是把 時鐘周期的多個相位都加以利用, 以達到更高的時間分辨。在通常的設計中, 我們只用到時鐘 的上升沿(0 相位) , 如果把時鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時鐘分為4 個相位(0°、90°、180°和270°) , 系統(tǒng)的時間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時來達到時鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準確, 而且引起的時間偏移(Skew ) 和抖動 (J itters) 比較大, 無法實現(xiàn)高精度的時間分辨。 近年來半導體技術的發(fā)展, 使高質量的分相功能在一 片芯片內實現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時鐘 芯片。這些芯片的出現(xiàn), 大大促進了時鐘分相技術在實際電 路中的應用。我們在這方面作了一些嘗試性的工作: 要獲得 良好的時間性能, 必須確保分相時鐘的Skew 和J itters 都 比較小。因此在我們的設計中, 通常用一個低頻、高精度的 晶體作為時鐘源, 將這個低頻時鐘通過一個鎖相環(huán)(PLL ) , 獲得一個較高頻率的、比較純凈的時鐘, 對這個時鐘進行分相, 就可獲得高穩(wěn)定、低抖動的分 相時鐘。 這部分電路在實際運用中獲得了很好的效果。下面以應用的實例加以說明。2 應用實例 2. 1 應用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時鐘分為4 個相位 數(shù)據(jù), 與其同步的時鐘信號并不傳輸。 但本地接收到數(shù)據(jù)時, 為了準確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時鐘, 即要獲取與數(shù) 據(jù)同步的時鐘信號。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y構如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個bit 占有14. 7ns 的寬度, 在每個數(shù)據(jù) 幀的開頭有一個用于同步檢測的頭部信息。我們要找到與它同步性好的時鐘信號, 一般時間 分辨應該達到1ö4 的時鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統(tǒng)時鐘頻率應在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對整個系統(tǒng)設計帶來很多的困擾。 我們在這里使用鎖相環(huán)和時鐘分相技術, 將一個16MHz 晶振作為時鐘源, 經(jīng)過鎖相環(huán) 89429 升頻得到68MHz 的時鐘, 再經(jīng)過分相芯片AMCCS4405 分成4 個相位, 如圖3 所示。 我們只要從4 個相位的68MHz 時鐘中選擇出與數(shù)據(jù)同步性最好的一個。選擇的依據(jù)是: 在每個數(shù)據(jù)幀的頭部(HEAD) 都有一個8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個相位的時鐘去鎖存數(shù)據(jù), 如果經(jīng)某個時鐘鎖存后的數(shù)據(jù)在這個指定位置最先檢測出這 個KWD, 就認為下一相位的時鐘與數(shù)據(jù)的同步性最好(相關)。 根據(jù)這個判別原理, 我們設計了圖4 所示的時鐘分相選擇電路。 在板上通過鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時鐘: 用這4 個 時鐘分別將輸入數(shù)據(jù)進行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認為檢 出了KWD。將4 路相關器的結果經(jīng)過優(yōu)先判選控制邏輯, 即可輸出同步性最好的時鐘。這里, 我們運用AMCC 公司生產(chǎn)的 S4405 芯片, 對68MHz 的時鐘進行了4 分 相, 成功地實現(xiàn)了同步時鐘的獲取, 這部分 電路目前已實際地應用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關鍵部 分。高速的ADC 價格昂貴, 而且系統(tǒng)設計 難度很高。以前就有人考慮使用多個低速 圖5 分相技術應用于采集系統(tǒng) ADC 和時鐘分相, 用以替代高速的ADC, 但由 于時鐘分相電路產(chǎn)生的相位不準確, 時鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(Aperture J itters) , 無法達到很 好的時間分辨。 現(xiàn)在使用時鐘分相芯片, 我們可以把分相 技術應用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時鐘分別作為ADC 的 轉換時鐘, 對模擬信號進行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號經(jīng)過 緩沖、調理, 送入ADC 進行模數(shù)轉換, 采集到的數(shù)據(jù)寫入存儲器(M EM )。各個 采集通道采集的是同一信號, 不過采樣 點依次相差90°相位。通過存儲器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時鐘為80MHz 的采 集系統(tǒng)達到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結 靈活地運用時鐘分相技術, 可以有效地用低頻時鐘實現(xiàn)相當于高頻時鐘的時間性能, 并 避免了高速數(shù)字電路設計中一些問題, 降低了系統(tǒng)設計的難度。
上傳時間: 2013-12-17
上傳用戶:xg262122
單片開關電源最新應用技術:突出實用性,全面系統(tǒng)深入地闡述了單片開關電源的最新應用技術。全書共十二章。第一章為單片開關電源綜述。第二章至第十一章分別介紹了當今國際上最流行的TOPSwitch-Ⅱ系列、TOPSwitch-FX系列、TOPSwitch-GX系列、Tiny Switch-II、LinkSwitch、LinkSwitch-Tn、LinkSwitch-HF、DPA-Switch、TEA1520、NCP1050、NCP1000、VIPer12A/22A等系列幾百種單片開關電源的原理與應用。第十二章專門介紹了單片開關電源的設計要點及關鍵元器件選擇。本書充分反映了近年來國內外在該領域的最新科研及應用成果。 第2版前言第一章 單片開關電源綜述第一節(jié) 單片開關電源的發(fā)展概況及主要特點第二節(jié) 單片開關電源的產(chǎn)品分類第三節(jié) 單片開關電源的性能指標第二章 TOPSwitch-Ⅱ系列第二代單片開關電源的應用第一節(jié) TOPSwitch-Ⅱ系列單片開關電源的性能特點第二節(jié) TOPSwitch-Ⅱ系列單片開關電源的工作原理第三節(jié) TOPSwitch-Ⅱ系列單片開關電源的快速設計法第四節(jié) TOPSwitch-Ⅱ系列單片開關電源的典型應用第五節(jié) TOPSwitch-Ⅱ系列產(chǎn)品在開關電源模塊中的應用第六節(jié) 由TOPSwitch-Ⅱ系列產(chǎn)品構成的特種開關電源第七節(jié) TOPSwitch-Ⅱ系列單片開關電源的設計要點第八節(jié) TOPSwitch-Ⅱ系列單片開關電源的測試技術第三章 TOPSwitch-FX系列第三代單片開關電源的應用第一節(jié) TOPSwitch-FX系列單片開關電源的性能特點第二節(jié) TOPSwitch-FX系列單片開關電源的工作原理第三節(jié) TOPSwitch-FX系列單片開關電源控制電路的設計第四節(jié) TOPSwitch-FX系列單片開關電源的快速設計法第五節(jié) TOPSwitch-FX系列單片開關電源的應用第六節(jié) TOPSwitch-FX系列單片開關電源的設計要點第七節(jié) TOPSwitch-FX系列單片開關電源的測試技術第四章 TOPSwitch-GX系列第四代單片開關電源的應用第一節(jié) TOPSwitch-GX系列單片開關電源的性能特點第二節(jié) TOPSwitch-GX系列單片開關電源的工作原理第三節(jié) TOPSwitch-GX系列單片開關電源的快速設計法第四節(jié) TOPSwitch-GX系列單片開關電源的應用第五節(jié) TOPSwitch-GX系列單片開關電源的設計要點第六節(jié) TOPSwitch-GX系列單片開關電源測試技術第五章 Tiny Switch-II系列第二代微型單片開關電源的應用第一節(jié) Tiny Switch-II系列微型單片開關電源的性能特點第二節(jié) Tiny Switch-II系列微型單片開關電源的工作原理第三節(jié) Tiny Switch-II系列單片開關電源的應用第四節(jié) Tiny Switch-II系列單片開關電源的設計要點及測試技術第六章 LinkSwitch系列單片開關電源的應用第一節(jié) LinkSwitch系列單片開關電源的工作原理第二節(jié) LinkSwitch系列單片開關電源的典型應用第三節(jié) LinkSwitch系列單片開關電源的設計要點第四節(jié) LinkSwitch系列單片開關電源模塊中的應用第七章 LinkSwitch-Tn系列單片開關電源的應用第八章 LinkSwitch-HF系列單片開關電源的應用第九章 DPA-Switch系列單片DC/DC電源變換器的應用第十章 TEA1520系列單片開關電源的應用第十一章 NCP1050系列單片開關電源的應用第十二章 單片開關電源的設計要點
上傳時間: 2013-11-23
上傳用戶:liuxinyu2016
摘要: 本文介紹了L ED 顯示屏常規(guī)型驅動電路的設計方式及其存在的缺陷, 提出了簡單的L ED 顯示屏恒流驅動方式及電路的實現(xiàn)。關鍵詞:L ED 顯示屏 動態(tài)掃描 驅動電路中圖分類號: Tn 873+ . 93 文獻標識碼:A 文章編號: 1005- 9490(2001) 03- 0252- 051 引 言 L ED 顯示屏是80 年代后期在全球迅速發(fā)展起來的新型信息顯示媒體, 它利用發(fā)光二極管構成的點陣模塊或像素單元, 組成大面積顯示屏幕, 以其可靠性高、使用壽命、環(huán)境適應能力強、性能價格比高、使用成本低等特點, 在信息顯示領域已經(jīng)得到了非常廣泛的應用[ 1 ]。L ED 顯示屏主要包括發(fā)光二極管構成的陣列、驅動電路、控制系統(tǒng)及傳輸接口和相應的應用軟件等, 其中驅動電路設計的好壞, 對L ED 顯示屏的顯示效果、制作成本及系統(tǒng)的運行性能起著很重要的作用。所以, 設計一種既能滿足控制驅動的要求, 同時使用器件少、成本低的控制驅動電路是很有必要的。本文就常規(guī)型驅動電路的設計作些分析并提出恒流驅動電路的設計方式。2 L ED 顯示屏常規(guī)驅動電路的設計 L ED 顯示屏驅動電路的設計, 與所用控制系統(tǒng)相配合, 通常分為動態(tài)掃描型驅動及靜態(tài)鎖存型驅動二大類。以下就動態(tài)掃描型驅動電路的設計為例為進行分析:動態(tài)掃描型驅動方式是指顯示屏上的4 行、8 行、16 行等n 行發(fā)光二極管共用一組列驅動寄存器, 通過行驅動管的分時工作, 使得每行L ED 的點亮時間占總時間的1ön , 只要每行的刷新速率大于50 Hz, 利用人眼的視覺暫留效應, 人們就可以看到一幅完整的文字或畫面[ 2 ]。常規(guī)型驅動電路的設計一般是用串入并出的通用集成電路芯片如74HC595 或MC14094 等作為列數(shù)據(jù)鎖存, 以8050 等小功率N PN 三極管為列驅動, 而以達林頓三極管如T IP127 等作為行掃描管, 其電路如圖1 所示。
上傳時間: 2014-02-19
上傳用戶:lingzhichao
huffman完整源代碼C語言實現(xiàn),有本人超級詳細解釋(看不懂你去跳樓吧) 算法設計: 1、對給定的n個權值{W1,W2,W3,...,Wi,...,Wn}構成n棵二叉樹的初始集合F={T1,T2,T3,...,Ti,...,Tn},其中每棵二叉樹Ti中只有一個權值為Wi的根結點,它的左右子樹均為空。(為方便在計算機上實現(xiàn)算法,一般還要求以Ti的權值Wi的升序排列。) 2、在F中選取兩棵根結點權值最小的樹作為新構造的二叉樹的左右子樹,新二叉樹的根結點的權值為其左右子樹的根結點的權值之和。 3、從F中刪除這兩棵樹,并把這棵新的二叉樹同樣以升序排列加入到集合F中。 4、重復二和三兩步,直到集合F中只有一棵二叉樹為止。
上傳時間: 2013-12-29
上傳用戶:ouyangtongze
哈夫曼樹的建立 一、 實驗目的: 1. 理解哈夫曼樹及其應用。 2. 掌握生成哈夫曼樹的算法。 二、 實驗內容: 哈夫曼樹,即最優(yōu)樹,是帶權路徑長度最短的樹。有著廣泛的應用。在解決某些判定問題上,及字符編碼上,有著重要的價值。 構造一棵哈夫曼樹,哈夫曼最早給出了算法,稱為哈夫曼算法: (1)根據(jù)給定的N個權值 W1,W2,W3,……,Wn ,構成N棵二叉樹的集合F= T1,T2,T3,……,Tn ,其中每棵二叉樹T1只有一個帶權為WI的根結點,其左右子樹均空。 (2)在 F中選出兩棵根結點權值最小的樹作為左右子樹構造一棵新的二叉樹,且置新的二叉樹的權值為其左右子樹上的根結點的權值之和。 (3)在F中刪除這兩棵樹,同時將新得到的加到F之中。重復(2)和(3),直至F中只剩一個為止。
上傳時間: 2013-12-24
上傳用戶:陽光少年2016