Recently millimeter-wave bands have been postu-
lated as a means to accommodate the foreseen extreme bandwidth
demands in vehicular communications, which result from the
dissemination of sensory data to nearby vehicles for enhanced
environmental awareness and improved safety level. However, the
literature is particularly scarce in regards to principled resource
allocation schemes that deal with the challenging radio conditions
posed by the high mobility of vehicular scenarios
Recently millimeter-wave bands have been postu-
lated as a means to accommodate the foreseen extreme bandwidth
demands in vehicular communications, which result from the
dissemination of sensory data to nearby vehicles for enhanced
environmental awareness and improved safety level.
The contemporary view of the Smart City is very much static and infrastructure-
centric, focusing on installation and subsequent management of Edge devices and
analytics of data provided by these devices. While this still allows a more efficient
management of the city’s infrastructure, optimizations and savings in different do-
mains, the existing architectures are currently designed as single-purpose, vertically
siloed solutions. This hinders active involvement of a variety of stakeholders (e.g.,
citizens and businesses) who naturally form part of the city’s ecosystem and have an
inherent interest in jointly coordinating and influencing city-level activities.
Licensed spectrum remains 3GPP operators’ top priority to deliver
advanced services and user experience
Opportunistic use of unlicensed spectrum is becoming an important
complement for operators to meet the growing traffic demand
Moving forward 3GPP operators will have two options to offload
traffic to unlicensed spectrum:
1. Wi-Fi (via LTE/Wi-Fi interworking)
2. LTE over unlicensed
It will then be up to each individual operator to choose which
approach to use, which will depend on a number of factors
Firstly, this book is set at a level suitable for senior undergraduate and
postgraduate students who wish to understand the fundamentals and applications
of adaptive array antenna systems. Array fundamentals are described in the text,
and examples which demonstrate theoretical concepts are included throughout
the book, as well as summaries and questions at the end of each chapter.
This is the second edition of a textbook that is intended for a senior or graduate-level
course in an electrical engineering (EE) curriculum on the subject of the analysis of
multiconductor transmission lines (MTLs). It will also serve as a useful reference
for industry professionals.
This book has grown out of my teaching and research at the University of Surrey and out of
my previous experiences in companies such as Philips, Ascom and Motorola. It is
primarily intended for use by students in master’s level and enhanced final-year under-
graduate courses who are specialising in communication systems and wish to understand
the principles and current practices of the wireless communication channel, including both
antenna and propagation aspects
Mobile communication has gained significant importance in today’s society. As
of 2010, the number of mobile phone subscribers has surpassed 5 billion [ABI10],
and the global annual mobile revenue is soon expected to top $1 trillion [Inf10].
While these numbers appear promising for mobile operators at first sight, the
major game-changer that has come up recently is the fact that the market is
more and more driven by the demand for mobile data traffic [Cis10].
This book is an entry-level text on the technology of telecommunications. It has been
crafted with the newcomer in mind. The eighteen chapters of text have been prepared
for high-school graduates who understand algebra, logarithms, and basic electrical prin-
ciples such as Ohm’s law. However, many users require support in these areas so Appen-
dices A and B review the essentials of electricity and mathematics through logarithms.
This book is an entry-level text on the technology of telecommunications. It has been
crafted with the newcomer in mind. The twenty-one chapters of text have been prepared
for high-school graduates who understand algebra, logarithms, and the basic principles of
electricity such as Ohm’s law. However, it is appreciated that many readers require support
in these areas. Appendices A and B review the essentials of electricity and mathematics
up through logarithms. This material was placed in the appendices so as not to distract
from the main theme, the technology of telecommunication systems. Another topic that
many in the industry find difficult is the use of decibels and derived units. Appendix C
provides the reader a basic understanding of decibels and their applications. The only
mathematics necessary is an understanding of the powers of ten