This book is based on a Ph.D. research that has been conducted at the Delft
UNIVERSITY of Technology in the Netherlands in collaboration with Dutch Electricity
& Gas Distribution Network Operator, Stedin. This book was written as a result of
wider interest that was shown by different industry groups on this topic after its
public defence. This inspired the author to modify and publish a practical version
of the research for a greater international audience. Therefore, the content of this
book is intended for a double audience, on the one hand for those interested in the
organisational and management aspects of maintenance.
My association with the theory of controls in continuous time started during my studies at
the Indian Institute of Technology, Kharagpur, India, in 1974 as an undergraduate student
in the Controls and Power program. The initial introduction by Professors Kesavamurthy,
Y. P. Singh, and Rajagopalan laid the foundation for a good basic understanding of the
subject matter. This pursuit and further advanced study in the field of digital controls
continued during my days as a graduate student in the Electrical and Systems Engineering
Department at the UNIVERSITY of Connecticut in Storrs, from 1983 to 1988.
This book is an outgrowth of a course developed at Stanford UNIVERSITY over
the past five years. It is suitable as a self-contained textbook for second-level
undergraduates or for first-level graduate students in almost every field that
employs quantitative methods. As prerequisites, it is assumed that the student
may have had a first course in differential equations and a first course in linear
algebra or matrix analysis. These two subjects, however, are reviewed in
Chapters 2 and 3, insofar as they are required for later developments.
基于TMS320F2812 光伏并網(wǎng)發(fā)電模擬裝置PROTEL設(shè)計(jì)原理圖+PCB+軟件源碼+WORD論文文檔,硬件采用2層板設(shè)計(jì),PROTEL99SE 設(shè)計(jì)的工程文件,包括完整的原理圖和PCB文件,可以做為你的學(xué)習(xí)設(shè)計(jì)參考。 摘要:本文實(shí)現(xiàn)了一個(gè)基于TMS320F2812 DSP芯片的光伏并網(wǎng)發(fā)電模擬裝置,采用直流穩(wěn)壓源和滑動(dòng)變阻器來模擬光伏電池。通過TMS320F2812 DSP芯片ADC模塊實(shí)時(shí)采樣模擬電網(wǎng)電壓的正弦參考信號(hào)、光伏電池輸出電壓、負(fù)載電壓電流反饋信號(hào)等。經(jīng)過數(shù)據(jù)處理后,用PWM模塊產(chǎn)生實(shí)時(shí)的SPWM 波,控制MOSFET逆變?nèi)珮蜉敵稣也ā1疚挠肞I控制算法實(shí)現(xiàn)了輸出信號(hào)對(duì)給定模擬電網(wǎng)電壓的正弦參考信號(hào)的頻率和相位跟蹤,用恒定電壓法實(shí)現(xiàn)了光伏電池最大功率點(diǎn)跟蹤(MPPT),從而達(dá)到模擬并網(wǎng)的效果。另外本裝置還實(shí)現(xiàn)了光伏電池輸出欠壓、負(fù)載過流保護(hù)功能以及光伏電池輸出欠壓、過流保護(hù)自恢復(fù)功能、聲光報(bào)警功能、孤島效應(yīng)的檢測(cè)、保護(hù)與自恢復(fù)功能。系統(tǒng)測(cè)試結(jié)果表明本設(shè)計(jì)完全滿定設(shè)計(jì)要求。關(guān)鍵詞:光伏并網(wǎng),MPPT,DSP Photovoltaic Grid-connected generation simulator Zhangyuxin,Tantiancheng,Xiewuyang(College of Electrical Engineering, Chongqing UNIVERSITY)Abstract: This paper presents a photovoltaic grid-connected generation simulator which is based on TMS320F2812 DSP, with a DC voltage source and a variable resistor to simulate the characteristic of photovoltaic cells. We use the internal AD converter to real-time sampling the referenced grid voltage signal, outputting voltage of photovoltaic, feedback outputting voltage and current signal. The PWM module generates SVPWM according to the calculation of the real-time sampling data, to control the full MOSFET inverter bridge output sine wave. We realized that the output voltage of the simulator can track the frequency and phase of the referenced grid voltage with PI regulation, and the maximum photovoltaic power tracking with constant voltage regulation, thereby achieved the purpose of grid-connected simulation. Additionally, this device has the over-voltage and over-current protection, audible and visual alarm, islanding detecting and protection, and it can recover automatically. The testing shows that our design is feasible.Keywords: Photovoltaic Grid-connected,MPPT,DSP 目錄引言 11. 方案論證 11.1. 總體介紹 11.2. 光伏電池模擬裝置 11.3. DC-AC逆變橋 11.4. MOSFET驅(qū)動(dòng)電路方案 21.5. 逆變電路的變頻控制方案 22. 理論分析與計(jì)算 22.1. SPWM產(chǎn)生 22.1.1. 規(guī)則采樣法 22.1.2. SPWM 脈沖的計(jì)算公式 32.1.3. SPWM 脈沖計(jì)算公式中的參數(shù)計(jì)算 32.1.4. TMS320F2812 DSP控制器的事件管理單元 42.1.5. 軟件設(shè)計(jì)方法 62.2. MPPT的控制方法與參數(shù)計(jì)算 72.3. 同頻、同相的控制方法和參數(shù)計(jì)算 8
基于LabVIEW2012FPGA模式的數(shù)據(jù)采集和存儲(chǔ)系統(tǒng)摘 要:為了提高數(shù)據(jù)采集系統(tǒng)精度,減少開發(fā)成本,提高開發(fā)效率,基于LabVIEW虛擬儀器開發(fā)工具研究并設(shè)計(jì)了一
種數(shù)據(jù)采集系統(tǒng)。該系統(tǒng)采用FPGA編程模式和網(wǎng)絡(luò)流技術(shù)實(shí)現(xiàn)大批量數(shù)據(jù)實(shí)時(shí)傳輸,并對(duì)數(shù)據(jù)進(jìn)行分析處理和存儲(chǔ)。系
統(tǒng)硬件采用美國NI實(shí)時(shí)控制器CRIO?9025,實(shí)現(xiàn)16路數(shù)據(jù)可靠采集與存儲(chǔ)。實(shí)驗(yàn)仿真及實(shí)際運(yùn)行結(jié)果表明該數(shù)據(jù)采集系
統(tǒng)能夠精確地對(duì)數(shù)據(jù)進(jìn)行實(shí)時(shí)采集以及分析處理,達(dá)到了項(xiàng)目要求。
關(guān)鍵詞:FPGA;FIFO;網(wǎng)絡(luò)流;數(shù)據(jù)采集系統(tǒng);SQL數(shù)據(jù)庫
中圖分類號(hào):TN98?34 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1004?373X(2014)14?0142?04
Data acquisition and storage system based on LabVIEW 2012FPGA pattern
WANG Shu?dong1,2
,WEI Kong?zhen1
,LI Xiao?pei1
(1. College of Electrical and Information Engineering,Lanzhou UNIVERSITY of Technology,Lanzhou 730050,China;
2. Gansu Key Laboratory for Advanced Industrial Process Control,Lanzhou 730050,China)
針對(duì)目前MSP430單片機(jī)實(shí)驗(yàn)裝置較少、實(shí)驗(yàn)內(nèi)容少,而且無MSP430高端產(chǎn)品的實(shí)驗(yàn)裝置,研制了基于MSP430F5529單片機(jī)的綜合實(shí)驗(yàn)裝置,主要包括MSP430 Launch Pad和母板兩部分。較傳統(tǒng)的單片機(jī)實(shí)驗(yàn)裝置增加了模擬電路的設(shè)置,設(shè)計(jì)的實(shí)驗(yàn)?zāi)軌蚶脝纹瑱C(jī)的所有外設(shè),可進(jìn)行模塊基礎(chǔ)實(shí)驗(yàn)和綜合實(shí)驗(yàn)兩大類實(shí)驗(yàn),非常適合自動(dòng)化和電氣信息類大學(xué)生學(xué)習(xí)使用。Concerning with the lack of experimental equipment and content based on MSP430,and especially,the experimental equipment of MSP430 senior products,an experimental equipment based on MSP430F5529 microcontroller is developed. It mainly consists of two parts: MSP430 Launch Pad and main board. Compared with traditional microcontroller experiment equipment,a few analog circuits were added. The experiment we set up takes advantage of all microcontroller peripherals. Students can do two kinds of experiments: module experiment and complex experiment.Therefore it fits UNIVERSITY students in automation and electrical major very well.