The LTC®3610 is a high power monolithic synchronousstep-down DC/DC regulator that can deliver up to 12Aof continuous output current from a 4V to 24V (28Vmaximum) input supply. It is a member of a high currentmonolithic regulator family (see Table 1) that featuresintegrated low RDS(ON) N-channel top and bottomMOSFETs. This results in a high effi ciency and highpower density solution with few external components.This regulator family uses a constant on-time valleycurrent mode architecture that is capable of operatingat very low duty cycles at high frequency and with veryfast transient response. All are available in low profi le(0.9mm max) QFN packages.
The LTC®4155 and LTC4156 are dual multiplexed-inputbattery chargers with PowerPath™ control, featuring I2Cprogrammability and USB On-The-Go for systems suchas tablet PCs and other high power density applications.The LTC4155’s float voltage (VFLOAT) range is optimizedfor Li-Ion batteries, while the LTC4156 is optimized forlithium iron phosphate (LiFePO4)batteries, supportingsystem loads to 4A with up to 3.5A of battery chargecurrent. I2C controls a broad range of functions and USBOn-The-Go functionality is controlled directly from theUSB connector ID pin.
In a recent discussion with a system designer, the requirementfor his power supply was to regulate 1.5Vand deliver up to 40A of current to a load that consistedof four FPGAs. This is up to 60W of power that must bedelivered in a small area with the lowest height profi lepossible to allow a steady fl ow of air for cooling. Thepower supply had to be surface mountable and operateat high enough effi ciency to minimize heat dissipation.He also demanded the simplest possible solution so histime could be dedicated to the more complex tasks. Asidefrom precise electrical performance, this solution had toremovethe heat generated during DC to DC conversionquickly so that the circuit and the ICs in the vicinity do notoverheat. Such a solution requires an innovative designto meet these criteria:
The LTM4601 DC/DC μModule regulator is a completehigh power density stepdown regulator for up to 12Acontinuous (14A peak) loads. The device is housed ina small 15mm ¥ 15mm ¥ 2.8mm LGA surface mountpackage, thus the large power dissipation is a challengein some applications. This thermal application note willprovide guidelines for using the μModule regulator inambient environments with or without air fl ow. Loadcurrent derating curves are provided for several inputvoltages and output voltages versus ambient temperatureand air fl ow.
Linear Technology has a sabbatical program. Every fiveyears employees are granted sabbatical leave, which maylast up to six weeks. You have 18 months from each fiveyear employment anniversary to take the leave. Sabbaticalis fully company paid and has no restrictions. The time isyours to do with as you please.
鎖定放大是微弱信號(hào)檢測(cè)的重要手段。基于相關(guān)檢測(cè)理論,利用開(kāi)關(guān)電容的開(kāi)關(guān)實(shí)現(xiàn)鎖定放大器中乘法器的功能,提出開(kāi)關(guān)電容和積分器相結(jié)合以實(shí)現(xiàn)相關(guān)檢測(cè)的方法,并設(shè)計(jì)出一種鎖定放大器。該鎖定放大器將微弱信號(hào)轉(zhuǎn)化為與之相關(guān)的方波,通過(guò)后續(xù)電路得到正比于被測(cè)信號(hào)的直流電平,為后續(xù)采集處理提供方便。測(cè)量數(shù)據(jù)表明鎖定放大器前級(jí)可將10-6 A的電流轉(zhuǎn)換為10-1 V的電壓,后級(jí)通過(guò)帶通濾波器級(jí)聯(lián)可將信號(hào)放大1×105倍。該方法在降低噪聲的同時(shí),可對(duì)微弱信號(hào)進(jìn)行放大,線(xiàn)性度較高、穩(wěn)定性較好。
Abstract:
Lock-in Amplifying(LIA)is one of important means for weak signal detection. Based on cross-correlation detection theory, switch in the swithched capacitor was used as multiplier of LIA, and a new method of correlation detection was proposed combining swithched capacitor with integrator. A kind of LIA was designed which can convert the weak signal to square-wave, then DC proportional to measured signal was obtained through follow-up conditioning circuit, providing convenience for signal acquisition and processing. The measured data shows that the electric current(10-6 A) can be changed into voltage(10-1 V) by LIA, and the signal is magnified 1×105 times by cascade band-pass filter. The noise is suppressed and the weak signal is amplified. It has the advantages of good linearity and stability.
HIGH SPEED 8051 μC CORE
- Pipe-lined Instruction Architecture; Executes 70% of Instructions in 1 or 2
System Clocks
- Up to 25MIPS Throughput with 25MHz System Clock
- 22 Vectored Interrupt Sources
MEMORY
- 4352 Bytes Internal Data RAM (256 + 4k)
- 64k Bytes In-System Programmable FLASH Program Memory
- External Parallel Data Memory Interface – up to 5Mbytes/sec
DIGITAL PERIPHERALS
- 64 Port I/O; All are 5V tolerant
- Hardware SMBusTM (I2CTM Compatible), SPITM, and Two UART Serial
Ports Available Concurrently
- Programmable 16-bit Counter/Timer Array with 5 Capture/Compare
Modules
- 5 General Purpose 16-bit Counter/Timers
- Dedicated Watch-Dog Timer; Bi-directional Reset
CLOCK SOURCES
- Internal Programmable Oscillator: 2-to-16MHz
- External Oscillator: Crystal, RC, C, or Clock
- Real-Time Clock Mode using Timer 3 or PCA
SUPPLY VOLTAGE ........................ 2.7V to 3.6V
- Typical Operating Current: 10mA @ 25MHz
- Multiple Power Saving Sleep and Shutdown Modes
100-Pin TQFP (64-Pin Version Available)
Temperature Range: –40°C to +85°C
為了有效地提升鉛酸蓄電池的使用壽命,同時(shí)實(shí)現(xiàn)對(duì)充電過(guò)程的監(jiān)控,設(shè)計(jì)出一種用單片機(jī)控制的36 V鉛酸蓄電池充電電源。本電路采用反激式拓?fù)洌B續(xù)電流工作模式,電源管理IC設(shè)計(jì)在電源的副邊,由ELAN公司的EM78P258N單片機(jī)模擬,是用可編程器件模擬電源管理IC,實(shí)現(xiàn)智能電源低成本化的一次成功嘗試,通過(guò)對(duì)單片機(jī)的軟件設(shè)計(jì)實(shí)現(xiàn)了充電電源的狀態(tài)顯示、充電時(shí)間控制、報(bào)警、過(guò)溫保護(hù)、過(guò)壓保護(hù)、過(guò)流保護(hù)等功能。本充電器真正的實(shí)現(xiàn)了鉛酸蓄電池的三段式充電過(guò)程,其最高輸出功率可達(dá)90 W,效率約85%,成本不到20元,具有很高的市場(chǎng)競(jìng)爭(zhēng)力。
Abstract: In order to extend the life of lead-acid battery efficiently and supervise the charging process meanwhile, a 36V lead-acid battery charge powe supply controlled by microcontroller is designed. The charger is flyback switching power supply and works in CCM mode. A EM78P258N microcontroller made by ELAN microelectronics corporation is used as power management IC which is designed at the secondary circuit. The project is a successful attempt to low-cost intelligent power used microcontroller simulating power management IC. The charger also has the functions of the status reveal, charge time control, alarming, thermal protect, current limit and overvoltage protect by the software design. The circuit actually implements the three-step charge process, whose power is up to 90W and whose efficiency can get 85%. The net cost of this charger is less than 20 RMB, so that the charger is of powerful market competitiveness.