The government of a small but important country has decided that the alphabet needs to be streamlined and reordered. Uppercase letters will be eliminated. They will issue a royal decree in the form of a String of B and A characters. The first character in the decree specifies whether a must come ( B )Before b in the new alphabet or ( A )After b . The second character determines the relative placement of b and c , etc. So, for example, "BAA" means that a must come Before b , b must come After c , and c must come After d .
Any letters beyond these requirements are to be excluded, so if the decree specifies k comparisons then the new alphabet will contain the first k+1 lowercase letters of the current alphabet.
Create a class Alphabet that contains the method choices that takes the decree as input and returns the number of possible new alphabets that conform to the decree. If more than 1,000,000,000 are possible, return -1.
Definition
Implemented BFS, DFS and A*
To compile this project, use the following command:
g++ -o search main.cpp
Then you can run it:
./search
The input is loaded from a input file in.txt
Here is the format of the input file:
The first line of the input file shoud contain two chars indicate the source and destination city for breadth first and depth first algorithm.
The second line of input file shoud be an integer m indicate the number of connections for the map.
Following m lines describe the map, each line represents to one connection in this form: dist city1 city2, which means there is a connection between city1 and city2 with the distance dist.
The following input are for A*
The following line contains two chars indicate the source and destination city for A* algorithm.
Then there is an integer h indicate the number of heuristic.
The following h lines is in the form: city dist which means the straight-line distance from the city to B is dist.
We have a group of N items (represented by integers from 1 to N), and we know that there is some total order defined for these items. You may assume that no two elements will be equal (for all a, b: a<b or b<a). However, it is expensive to compare two items. Your task is to make a number of comparisons, and then output the sorted order. The cost of determining if a < b is given by the bth integer of element a of costs (space delimited), which is the same as the ath integer of element b. Naturally, you will be judged on the total cost of the comparisons you make before outputting the sorted order. If your order is incorrect, you will receive a 0. Otherwise, your score will be opt/cost, where opt is the best cost anyone has achieved and cost is the total cost of the comparisons you make (so your score for a test case will be between 0 and 1). Your score for the problem will simply be the sum of your scores for the individual test cases.
1. 下列說法正確的是 ( )
A. Java語言不區分大小寫
B. Java程序以類為基本單位
C. JVM為Java虛擬機JVM的英文縮寫
D. 運行Java程序需要先安裝JDK
2. 下列說法中錯誤的是 ( )
A. Java語言是編譯執行的
B. Java中使用了多進程技術
C. Java的單行注視以//開頭
D. Java語言具有很高的安全性
3. 下面不屬于Java語言特點的一項是( )
A. 安全性
B. 分布式
C. 移植性
D. 編譯執行
4. 下列語句中,正確的項是 ( )
A . int $e,a,b=10
B. char c,d=’a’
C. float e=0.0d
D. double c=0.0f
The PCA9549 provides eight bits of high speed TTL-compatible bus switching controlledby the I2C-bus. The low ON-state resistance of the switch allows connections to be madewith minimal propagation delay. Any individual A to B channel or combination of channelscan be selected via the I2C-bus, determined by the contents of the programmable Controlregister. When the I2C-bus bit is HIGH (logic 1), the switch is on and data can flow fromPort A to Port B, or vice versa. When the I2C-bus bit is LOW (logic 0), the switch is open,creating a high-impedance state between the two ports, which stops the data flow.An active LOW reset input (RESET) allows the PCA9549 to recover from a situationwhere the I2C-bus is stuck in a LOW state. Pulling the RESET pin LOW resets the I2C-busstate machine and causes all the bits to be open, as does the internal power-on resetfunction.
LPC2148 USB Audio Device Example
This USB example project implements an USB Audio Device that connects via the USB interface to the PC. It may be used on the following devices:
LPC2141
LPC2142
LPC2144
LPC2146
LPC2148
An USB Audio Device (HID) does not require any special USB driver, since the USB Audio support is already built into Windows 2000 and Windows XP. Therefore USB Audio devices can be directly connected to the computer. This example project is designed to work with Keil MCB2140 Evaluation Board.
Refer to Running USBAudio for information on how to operate this example project.
This book is for developers who design and program devices that use the
Universal Serial Bus (USB) interface. The goal is to introduce you to USB
and to help you get your devices up and communicating as quickly and easily
as possible.