The LTC®4155 and LTC4156 are dual multiplexed-inputbattery chargers with PowerPath™ control, featuring I2Cprogrammability and USB On-The-Go for systems suchas tablet PCs and other high power density applications.The LTC4155’s float Voltage (VFLOAT) range is optimizedfor Li-Ion batteries, while the LTC4156 is optimized forlithium iron phosphate (LiFePO4)batteries, supportingsystem loads to 4A with up to 3.5A of battery chargecurrent. I2C controls a broad range of functions and USBOn-The-Go functionality is controlled directly from theUSB connector ID pin.
High Voltage buck DC/DC controllers such as the LTC3890(dual output) and LTC3891 (single output) are popular inautomotive applications due to their extremely wide 4V to60V input Voltage range, eliminating the need for a snubberand Voltage suppression circuitry. These controllersare also well suited for 48V telecom applications whereno galvanic isolation is required.
One of the fi rst lessons in a basic electronics coursecovers the symbols for resistors, capacitors, inductors,Voltage sources and current sources. Althougheach symbol represents a functional component of areal-world circuit, only some of the symbols have directphysical counterparts. For instance, the three discretepassive devices—resistors, capacitors, inductors—canbe picked off a shelf and placed on a real board muchas their symbolic analogs appear in a basic schematic.Likewise, while Voltage sources have no direct 2-terminalanalog, a Voltage source can be easily built with an offthe-shelf linear regulator.
The Voltage range of Linear Technology’s PowerPath® circuitscan be easily extended with just a few components, thusallowing them to meet the needs of virtually all applications.This application note presents solutions for circuits thatmust withstand large negative Voltages, a reverse adapterinput for example, and circuits that must withstand largepositive inputs, such as automotive load-dump.
Avalanche photodiodes (APDs) are widely utilized in laserbased fiberoptic systems to convert optical data intoelectrical form. The APD is usually packaged with a signalconditioning amplifier in a small module. An APD receivermodule and attendant circuitry appears in Figure 1. TheAPD module (figure right) contains the APD and a transimpedance(e.g., current-to-Voltage) amplifier. An opticalport permits interfacing fiberoptic cable to the APD’sphotosensitive portion. The module’s compact constructionfacilitates a direct, low loss connection between theAPD and the amplifier, necessary because of the extremelyhigh speed data rates involved
Telecommunication, satellite links and set-top boxes allrequire tuning a high frequency oscillator. The actualtuning element is a varactor diode, a 2-terminal device thatchanges capacitance as a function of reverse bias Voltage.1 The oscillator is part of a frequency synthesizingloop, as detailed in Figure 1. A phase locked loop (PLL)compares a divided down representation of the oscillatorwith a frequency reference. The PLL’s output is levelshifted to provide the high Voltage necessary to bias thevaractor, which closes a feedback loop by Voltage tuningthe oscillator. This loop forces the Voltage controlledoscillator (VCO) to operate at a frequency determined bythe frequency reference and the divider’s division ratio.
Photomultipliers (PMT), avalanche photodiodes (APD),ultrasonic transducers, capacitance microphones, radiationdetectors and similar devices require high Voltage,low current bias. Additionally, the high Voltage must bepristinely free of noise; well under a millivolt is a commonrequirement with a few hundred microvolts sometimesnecessary. Normally, switching regulator confi gurationscannot achieve this performance level without employingspecial techniques. One aid to achieving low noise is thatload currents rarely exceed 5mA. This freedom permitsoutput fi ltering methods that are usually impractical
The LTM4600 DC/DC μModule regulator is a complete highpower density stepdown regulator for 10A continuous (14Apeak) loads. The device has two Voltage options: 20VINmaximum for the LTM4600EV and 28VIN maximum for theLTM4600HVEV each housed in a small 15mm ¥ 15mm ¥2.8mm LGA surface mount package.
The design of battery-powered equipment can often bequite challenging. Since few ICs can operate directly fromthe end-of-life Voltage from a 2-cell battery (about 1.8V),most systems require a DC/DCconverter. The systemdesigner often has a limited area in which to place the DC/DC converter; associated inductors and capacitors must be
為解決直流逆變交流的問題,有效地利用能源,讓電源輸出最大功率,設計了高性能的基于IR2101最大功率跟蹤逆變器,并以SPMC75F2413A單片機作為主控制器。高電壓、高速功率的MOSFET或IGBT驅動器IR2101采用高度集成的電平轉換技術,同時上管采用外部自舉電容上電,能夠穩定高效地驅動MOS管。該逆變器可以實現DC/AC的轉換,最大功率點的跟蹤等功能。實際測試結果表明,該逆變器系統具有跟蹤能力強,穩定性高,反應靈敏等特點,該逆變器不僅可應用于普通的電源逆變系統,而且可應用于光伏并網發電的逆變系統,具有廣泛的市場前景。
Abstract:
To solve the problem of DC-AC inverter, and to utilize solar energy more efficiently, the design of maximum power point tracking inverter based on IR2101 was achieved with a high-performance, which can make the system output power maximum. SPMC75F2413A was adopted as main controller. IR2101 is a high Voltage, high speed power MOSFET and IGBT driver. It adopted highly integrated Voltage level transforming technology, and an external bootstrap capacitor was used, which could drive MOS tube efficiently and stably. Many functions are achieved in the system, such as DC/AC conversion, maximun power point tracking, etc. The actual test result shows that the inverter system has characteristics of strong tracking ability, high stability and reacting quickly. The design can not only be used in ordinary power inverter system, but also be used in photovoltaic power inverter system. The design has certain marketing prospects