Abstract—Wireless networks in combination with image
sensors open up a multitude of previously unthinkable sensing
applications. Capable tools and testbeds for these wireless image
sensor networks can greatly accelerate development of complex,
yet efficient algorithms that meet application requirements. In this
paper, we introduce WiSNAP, a Matlab-based application
development platform intended for wireless image sensor
networks. It allows researchers and developers of such networks
to investigate, design, and evaluate algorithms and applications
using real target hardware. WiSNAP offers standardized and
easy-to-use Application Program Interfaces (APIs) to control
image sensors and wireless motes, which do not require detailed
knowledge of the target hardware. Nonetheless, its open system
architecture enables support of virtually any kind of sensor or
wireless mote. Application examples are presented to illustrate the
usage of WiSNAP as a powerful development tool.
標簽:
combination
previously
multitude
Abstract
上傳時間:
2013-12-03
上傳用戶:D&L37
The Internet of Things is considered to be the next big opportunity, and challenge, for the
Internet engineering community, users of technology, companies and society as a whole. It
involves connecting embedded devices such as sensors, home appliances, weather stations
and even toys to Internet Protocol (IP) based networks. The number of IP-enabled embedded
devices is increasing rapidly, and although hard to estimate, will surely outnumber the
number of personal computers (PCs) and servers in the future. With the advances made over
the past decade in microcontroller,low-power radio, battery and microelectronic technology,
the trend in the industry is for smart embedded devices (called smart objects) to become
IP-enabled, and an integral part of the latest services on the Internet. These services are no
longer cyber, just including data created by humans, but are to become very connected to the
physical world around us by including sensor data, the monitoring and control of machines,
and other kinds of physical context. We call this latest frontier of the Internet, consisting of
wireless low-power embedded devices, the Wireless Embedded Internet. Applications that
this new frontier of the Internet enable are critical to the sustainability, efficiency and safety
of society and include home and building automation, healthcare, energy efficiency, smart
grids and environmental monitoring to name just a few.
標簽:
Embedded
Internet
Wireless
6LoWPAN
The
上傳時間:
2020-05-26
上傳用戶:shancjb