-
Emerging technologies such as WiFi and WiMAX are profoundly changing the
landscape of wireless broadband. As we evolve into future generation wireless
networks, a primary challenge is the support of high data rate, integrated multi-
media type traffic over a unified platform. Due to its inherent advantages in
high-speed communication, orthogonal frequency division multiplexing (OFDM)
has become the modem of choice for a number of high profile wireless systems
(e.g., DVB-T, WiFi, WiMAX, Ultra-wideband).
標(biāo)簽:
Broadband
Wireless
Networks
上傳時(shí)間:
2020-05-26
上傳用戶:shancjb
-
The idea of writing this book entitled “Cognitive Networked Sensing and Big Data”
started with the plan to write a briefing book on wireless distributed computing
and cognitive sensing. During our research on large-scale cognitive radio network
(and its experimental testbed), we realized that big data played a central role. As a
result, the book project reflects this paradigm shift. In the context, sensing roughly
is equivalent to “measurement.”
標(biāo)簽:
Cognitive
Networked
Sensing
Data
Big
and
上傳時(shí)間:
2020-05-26
上傳用戶:shancjb
-
Over the past ten years there has been a revolution in the devel-
opment and acceptance of mobile products. In that period, cel-
lular telephony and consumer electronics have moved from the
realm of science fiction to everyday reality. Much of that revolu-
tion is unremarkable – we use wireless, in its broadest sense, for
TV remote controls, car keyfobs, travel tickets and credit card
transactions every day. At the same time, we have increased the
number of mobile devices that we carry around with us. However,
in many cases the design and function of these and other static
products are still constrained by the wired connections that they
use to transfer and share data.
標(biāo)簽:
Short-Range
Essentials
Wireless
of
上傳時(shí)間:
2020-05-27
上傳用戶:shancjb
-
With the rapid growth in the number of wireless applications, services and devices,
using a single wireless technology such as a second generation (2G) and third gener-
ation (3G) wireless system would not be efficient to deliver high speed data rate and
quality-of-service (QoS) support to mobile users in a seamless way. The next genera-
tion wireless systems (also sometimes referred to as Fourth generation (4G) systems)
are being devised with the vision of heterogeneity in which a mobile user/device will
be able to connect to multiple wireless networks (e.g., WLAN, cellular, WMAN)
simultaneously.
標(biāo)簽:
Heterogeneous
Wireless
Networks
Access
上傳時(shí)間:
2020-05-27
上傳用戶:shancjb
-
Emerging technologies such as WiFi and WiMAX are profoundly changing the
landscape of wireless broadband. As we evolve into future generation wireless
networks, a primary challenge is the support of high data rate, integrated multi-
media type traffic over a unified platform. Due to its inherent advantages in
high-speed communication, orthogonal frequency division multiplexing (OFDM)
has become the modem of choice for a number of high profile wireless systems
(e.g., DVB-T, WiFi, WiMAX, Ultra-wideband).
標(biāo)簽:
OFDM-Based
Broadband
Networks
Wireless
上傳時(shí)間:
2020-05-31
上傳用戶:shancjb
-
Optical wireless communication is an emerging and dynamic research and development
area that has generated a vast number of interesting solutions to very complicated
communication challenges. For example, high data rate, high capacity and minimum
interference links for short-range communication for inter-building communication,
computer-to-computer communication, or sensor networks. At the opposite extreme is
a long-range link in the order of millions of kilometers in the new mission to Mars
and other solar system planets.
標(biāo)簽:
Communication
Wireless
Optical
Systems
上傳時(shí)間:
2020-05-31
上傳用戶:shancjb
-
The ever-increasing demand for private and sensitive data transmission over wireless net-
works has made security a crucial concern in the current and future large-scale, dynamic,
and heterogeneous wireless communication systems. To address this challenge, computer
scientists and engineers have tried hard to continuously come up with improved crypto-
graphic algorithms. But typically we do not need to wait too long to find an efficient way
to crack these algorithms. With the rapid progress of computational devices, the current
cryptographic methods are already becoming more unreliable. In recent years, wireless re-
searchers have sought a new security paradigm termed physical layer security. Unlike the
traditional cryptographic approach which ignores the effect of the wireless medium, physi-
cal layer security exploits the important characteristics of wireless channel, such as fading,
interference, and noise, for improving the communication security against eavesdropping
attacks. This new security paradigm is expected to complement and significantly increase
the overall communication security of future wireless networks.
標(biāo)簽:
Communications
Physical
Security
Wireless
Layer
in
上傳時(shí)間:
2020-05-31
上傳用戶:shancjb
-
Wireless means different things to different people. For this book, it refers
to the radio systems that provide point-to-point, point-to-multipoint, and
Earth-space communications over transmission links that propagate outside
buildings through the lower atmosphere. Wireless systems are being built
that provide data transmission between computers and other devices on
one’s own desk. These are part of the wireless world but not the part where,
except for interference perhaps, the atmosphere has any influence. The intent
of this book is to provide a description of the physical phenomena that can
affect propagation through the atmosphere, present sample measurements
and statistics, and provide models that system designers can use to calculate
their link budgets and estimate the limitations the atmosphere may place on
their design.
標(biāo)簽:
Communication
Propagation
Handbook
Wireless
for
上傳時(shí)間:
2020-05-31
上傳用戶:shancjb
-
n the first part of this book, we give an introduction to the basic applications of wireless com-
munications, as well as the technical problems inherent in this communication paradigm. After a
brief history of wireless, Chapter 1 describes the different types of wireless services, and works
out their fundamental differences. The subsequent Section 1.3 looks at the same problem from
a different angle: what data rates, ranges, etc., occur in practical systems, and especially, what
combination of performance measures are demanded (e.g., what data rates need to be transmitted
over short distances; what data rates are required over long distances?) Chapter 2 then describes
the technical challenges of communicating without wires, putting special emphasis on fading and
co-channel interference. Chapter 3 describes the most elementary problem of designing a wireless
system, namely to set up a link budget in either a noise-limited or an interference-limited system.
After studying this part of the book, the reader should have an overview of different types of
wireless services, and understand the technical challenges involved in each of them. The solutions
to those challenges are described in the later parts of this book.
標(biāo)簽:
Communications
Wireless
Edition
2nd
上傳時(shí)間:
2020-06-01
上傳用戶:shancjb
-
Wireless networking is undergoing a transformation from what has
been primarily a medium for supporting voice traffic between telephones,
into what is increasingly becoming a medium for supporting traffic among
a variety of digital devices transmitting media of many types (voice,
data, images, video. etc.) Wireline networking underwent a similar
transformation in the 1990s, which led to an enormous build-up in the
capacity of such networks, primarily through the addition of new optical
fiber, switches and other infrastructure.
標(biāo)簽:
Multiusers
Detection
Wireless
Networks
上傳時(shí)間:
2020-06-01
上傳用戶:shancjb