A PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS CRC校驗理論與實踐的經典教程,Ross寫的。
標簽: ALGORITHMS CRC DETECTION PAINLESS
上傳時間: 2016-12-15
上傳用戶:gxf2016
This package provides encoders and fast Viterbi decoders for the NASA standard rate 1/2 and rate 1/3 constraint length 7 convolutional codes.
標簽: rate and encoders decoders
上傳時間: 2013-12-18
上傳用戶:彭玖華
msp430心電儀程序代碼 ............\Heart rate ............\Heart rate with DAC output ............\Heart rate with EKG Demo ............\mul.s43(需要與上面三個之一配合使用)
上傳時間: 2016-12-24
上傳用戶:曹云鵬
microsoft sqlserver internal error!
標簽: microsoft sqlserver internal error
上傳時間: 2013-12-27
上傳用戶:lacsx
Generate trellis data of a rate-1/n convolutional encoder.卷積碼1/n的編碼器,注意生成的是非系統碼。
標簽: convolutional Generate trellis encoder
上傳時間: 2014-12-20
上傳用戶:ghostparker
Generate trellis of a rate-1/n recursive convolutional code,生成網格圖(對碼率為1/n的遞歸卷積碼)
標簽: convolutional recursive Generate trellis
上傳時間: 2013-12-09
上傳用戶:xz85592677
This function calculates Akaike s final prediction error % estimate of the average generalization error. % % [FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) produces the % final prediction error estimate (fpe), the effective number of % weights in the network if the network has been trained with % weight decay, an estimate of the noise variance, and the Gauss-Newton % Hessian. %
標簽: generalization calculates prediction function
上傳時間: 2014-12-03
上傳用戶:maizezhen
This function calculates Akaike s final prediction error % estimate of the average generalization error for network % models generated by NNARX, NNOE, NNARMAX1+2, or their recursive % counterparts. % % [FPE,deff,varest,H] = nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,skip,Chat) % produces the final prediction error estimate (fpe), the effective number % of weights in the network if it has been trained with weight decay, % an estimate of the noise variance, and the Gauss-Newton Hessian. %
標簽: generalization calculates prediction function
上傳時間: 2016-12-27
上傳用戶:腳趾頭
Train a two layer neural network with a recursive prediction error % algorithm ("recursive Gauss-Newton"). Also pruned (i.e., not fully % connected) networks can be trained. % % The activation functions can either be linear or tanh. The network % architecture is defined by the matrix NetDef , which has of two % rows. The first row specifies the hidden layer while the second % specifies the output layer.
標簽: recursive prediction algorithm Gauss-Ne
上傳時間: 2016-12-27
上傳用戶:ljt101007
Error probability performance for W-CDMA systems with multiple transmit and receive antennas in correlated Nakagami fading channels
標簽: probability performance antennas multiple
上傳時間: 2014-01-08
上傳用戶:WMC_geophy