Setting and Changing Column Widths
By default, all columns in a table start out with equal width, and the columns automatically fill the entire width of the table. When the table becomes wider or narrower (which might happen when the user resizes the window containing the table), all the column widths change appropriately.
This demonstration shows that reordering the rows and columns of a sparse matrix S can affect the time and storage required for a matrix operation such as factoring S into its Cholesky decomposition
* The keyboard is assumed to be a matrix having 4 rows by 6 columns. However, this code works for any
* matrix arrangements up to an 8 x 8 matrix. By using from one to three of the column inputs, the driver
* can support "SHIFT" keys. These keys are: SHIFT1, SHIFT2 and SHIFT3.
The PCF8578 is a low power CMOS1 LCD row and column driver, designed to drive dotmatrix graphic displays at multiplex rates of 1:8, 1:16, 1:24 or 1:32. The device has40 outputs, of which 24 are programmable and configurable for the following ratios ofrows/columns: 32¤8, 24¤16, 16¤24 or 8¤32. The PCF8578 can function as a stand-alone LCDcontroller and driver for use in small systems. For larger systems it can be used inconjunction with up to 32 PCF8579s for which it has been optimized. Together these twodevices form a general purpose LCD dot matrix driver chip set, capable of driving displaysof up to 40960 dots. The PCF8578 is compatible with most microcontrollers andcommunicates via a two-line bidirectional bus (I2C-bus). Communication overhead isminimized by a display RAM with auto-incremented addressing and display bankswitching.
The code is fairly straightforward, except perhaps for the call to convertColumnIndexToModel. That call is necessary because if the user moves the columns around, the view s index for the column doesn t match the model s index for the column. For example, the user might drag the Vegetarian column (which the model considers to be at index 4) so it s displayed as the first column — at view index 0. Since prepareRenderer gives us the view index, we need to translate the view index to a model index so we can be sure we re dealing with the intended column
his folder contains the following files:
1. 02490rxP802-15_SG3a-Channel-Modeling-Subcommittee-Report-Final.doc: This is the final
report of the channel modeling sub-committee.
2. cmx_imr.csv (x=1, 2, 3, and 4) represent the files containing the actual 100 channel
realizations for CM1, CM2, CM3, and CM4. The columns are organized as (time, amp, time, amp,...)
3. cmx_imr_np.csv (x=1, 2, 3, and 4) represent the files containing the number of paths in
each of the 100 multipath realizations.
4. cmx_imr.mat (x=1, 2, 3, and 4) are the .mat files that can be loaded directly into
Matlab (TM).
5. *.m files are the Matlab (TM) files used to generate the various channel realizations.
function y_cum = cum2x (x,y, maxlag, nsamp, overlap, flag)
%CUM2X Cross-covariance
% y_cum = cum2x (x,y,maxlag, samp_seg, overlap, flag)
% x,y - data vectors/matrices with identical dimensions
% if x,y are matrices, rather than vectors, columns are
% assumed to correspond to independent realizations,
% overlap is set to 0, and samp_seg to the row dimension.
% maxlag - maximum lag to be computed [default = 0]
% samp_seg - samples per segment [default = data_length]
% overlap - percentage overlap of segments [default = 0]
% overlap is clipped to the allowed range of [0,99].
Using spectra to calculate strength of reflections and losses in passive cavities.The wavelength, reflection spectrum and transmission spectrum should be in the first 3 columns of an Excel file, which is selected when the cavity.m Matlab file is run.