The emphasis of this book is on real-time application of Synopsys tools, used
to combat various problems seen at VDSM geometries. Readers will be
exposed to an effective design methodology for handling complex, submicron
ASIC designs. Significance is placed on HDL coding styles,
synthesis and optimization, dynamic simulation, formal verification, DFT
scan insertion, links to layout, physical synthesis, and static timing analysis.
At each step, problems related to each phase of the design flow are identified,
with solutions and work-around described in detail. In addition, crucial issues
related to layout, which includes clock tree synthesis and back-end
integration (links to layout) are also discussed at length. Furthermore, the
book contains in-depth discussions on the basics of Synopsys technology
libraries and HDL coding styles, targeted towards optimal synthesis solution.
This material is not only up-to-date, it defines up-to-date. It is truly cutting-edge. As the only book on the subject, Rootkits will be of interest to any Windows security researcher or security programmer. It s detailed, well researched and the technical information is excellent. The level of technical detail, research, and time invested in developing relevant examples is impressive.
This routine calls the glpk library to solve a LP/MIP problem. A typical
LP problem has following structure:
[min|max] C x
s.t.
Ax ["="|"<="|">="] b
{x <= UB}
{x >= LB}
The calling syntax is:
[XMIN,FMIN,STATUS,EXTRA]=glpkmex(SENSE,C,A,B,CTYPE,LB,UB,... VARTYPE,PARAM,LPSOLVER,SAVE)
I. C. Wong, Z. Shen, J. G. Andrews, and B. L. Evans, ``A Low Complexity Algorithm for Proportional Resource Allocation in OFDMA Systems , Proc. IEEE Int. Work. Signal Processing Systems, 針對這篇文章給出的源代碼