What is New in C51 Version 8.18[Device Support]Added debug support for the NXP P89LPC9408 in the LPC900 EPM Emulator/Programmer.[New Supported Device]Nuvoton W681308 device.[New Supported Device]NXP P89LPC9201, P89LPC9211, P89LPC922A1, P89LPC9241, P89LPC9251, P89LPC9301, P89LPC931A1, P89LPC9331, P89LPC9341, and P89LPC9351 devices.[New Supported Device]SiLabs C8051F500, C8051F501, C8051F504, C8051F505, C8051F506, C8051F507, C8051F508, C8051F509, C8051F510, and C8051F511 devices.[ULINK2 Support]Corrected potential deadlock on ST uPSD targets.[Device Simulation]Corrected simulation of Infineon XC800 MDU.[Device Simulation]Corrected behaviour of EXFn and TOGn on SiLabs C8051F12x/F13x devices.[Device Simulation]Added simulation for Atmel AT89C51RE2, including simulation of second UART.[Cx51 Compiler]Corrected failed initialization on far addresses when the object is located with _at_.
本資料僅供學習評估之用,請勿用于商業用途!請在學習評估24小時內刪除.
CCAVR軟件有ISP功能,能過調用STK500完成的,只要設置好參數,在ICCAVR中就可以給芯片編程了,還可以讓程序一編譯完就自動下載到芯片中,相當方便。在Tools->environment options->ISP里設定STK500.exe的路徑。— 用于調用STK500程序。在Tools->In system programming 里Programmer Interface中選中STK500。— 選擇STK500下載方式。在Tools->In system programming 里把Auto Program After Compile 的小勾選上。— 編譯后自動編程。在Tools->In system programming 中還有一些設置項,大家可以根據需要進行相關設置。下面的圖片是操作過程。
PICkit™ 2 Microcontroller Programmer USER’S GUIDE
This chapter contains general information that will be useful to know before using thePICkit™ 2 Microcontroller Programmer. Items discussed in this chapter include:• Document Layout• Conventions Used in this Guide• Warranty Registration• Recommended Reading• The Microchip Web Site• Development Systems Customer Change Notification Service• Customer Support• Document Revision History
1.The C Programming Language is a powerful, flexible andpotentially portable high-level programming language. 2.The C language may be used successfully to create a programfor an 8-bit MCU, but to produce the most efficient machinecode, the programmer must carefully construct the C Languageprogram.3.The programmer must not only create an efficient high leveldesign, but also pay attention to the detailed implementation.
Designing Boards with Atmel AT89C51, AT89C52, AT89C1051, and AT89C2051 for Writing Flash at In-Circuit Test:Recent improvements in chips andtesters have made it possible for thetester to begin taking over the role traditionallyassigned to the PROM programmer.Instead of having a PROM programmerwrite nonvolatile memoriesbefore assembling the board, the in-circuittester writes them during in-circuittesting operations. Many Teradyne Z18-series testers are now in use loadingcode into nonvolatile memories, microcontrollersand in-circuit programmable logic devices. The purpose of this note is to explain how the Z18 approaches the writing task for Atmel AT89C series IC’s,so that designers of boards using these chips can get the best results.
The 87C576 includes two separate methods of programming theEPROM array, the traditional modified Quick-Pulse method, and anew On-Board Programming technique (OBP).Quick Pulse programming is a method using a number of devicepins in parallel (see Figure 1) and is the traditional way in which87C51 family members have been programmed. The Quick-Pulsemethod supports the following programming functions:– program USER EPROM– verify USER EPROM– program KEY EPROM– program security bits– verify security bits– read signature bytesThe Quick-Pulse method is quite easily suited to standardprogramming equipment as evidenced by the numerous vendors of87C51 compatible programmers on the market today. Onedisadvantage is that this method is not well suited to programming inthe embedded application because of the large number of signallines that must be isolated from the application. In addition, parallelsignals from a programmer would need to be cabled to theapplication’s circuit board, or the application circuit board wouldneed to have logic built-in to perform the programming functions.These requirements have generally made in-circuit programmingusing the modified Quick Pulse method impractical in almost all87C51 family applications.
MCSÉ-51 Programmer's Guide and Instruction Set
The information presented in this chapter is collected from the MCSÉ-51 Architectural Overview and the HardwareDescription of the 8051, 8052 and 80C51 chapters of this book. The material has been selected and rearranged toform a quick and convenient reference for the programmers of the MCS-51. This guide pertains specifically to the8051, 8052 and 80C51.
The AT89C52 is a low-power, high-performance CMOS 8-bit microcomputer with 8Kbytes of Flash programmable and erasable read only memory (PEROM). The deviceis manufactured using Atmel’s high-density nonvolatile memory technology and iscompatible with the industry-standard 80C51 and 80C52 instruction set and pinout.The on-chip Flash allows the program memory to be reprogrammed in-system or by aconventional nonvolatile memory programmer. By combining a versatile 8-bit CPUwith Flash on a monolithic chip, the Atmel AT89C52 is a powerful microcomputerwhich provides a highly-flexible and cost-effective solution to many embedded controlapplications.